Structural versus Behavioral Remedies in the Deregulation of Electricity Markets: An Experimental Investigation Guided by Theory and Policy Concerns

Silvester van Koten, ¹ Loyola de Palacio Chair, RSCAS, European University Institute, Florence <u>Silvester.VanKoten@eui.eu</u>, <u>slvstr@gmail.com</u>

Andreas Ortmann, The University of New South Wales, Sydney a.ortmann@unsw.edu.au, aortmann@gmail.com

Keywords: European Electricity Markets, Economics Experiments, Remedies, Forward Markets, Competition Policy.

Abstract

We try to better understand the comparative advantages of structural and behavioral remedies of deregulation in electricity markets, an eminent policy issue for which the experimental evidence is scant and problematic. Specifically, we investigate theoretically and experimentally the effects on competition of introducing a forward market which the European Commission classifies as a behavioral remedy. We compare this scenario with its best alternative, the structural remedy of adding one more competitor by divestiture. Our study contributes to the literature by introducing more realistic cost configurations, by teasing apart competition effect and asset effect, and by investigating competitor numbers that reflect the market concentration in the European electricity industries. Our experimental data suggest that introducing a forward market has a positive effect on the aggregate supply in markets with two or three major competitors, configurations typical for the newly accessed and the old European Union member states, respectively. Introducing a forward market also increases efficiency. In contrast to previous findings, our data furthermore suggest that the effect of introducing a forward market is stronger than adding one more competitor. We thus provide evidence that behavioral remedies may be more effective than structural ones. Our data hence suggest that competition authorities are well advised, in line with EU law (European Commission, 2006a, p.11), to focus on introducing, and facilitating the proper functioning of, forward markets rather than on lowering market concentration by divestiture.

¹Corresponding author

1. Introduction

Concentration in generator markets remains a major problem in the EU electricity markets. The European Commission (2007a, p.7), for example, concludes: "At the wholesale level, gas and electricity markets remain national in scope, and generally maintain the high level of concentration of the pre-liberalization period. This gives scope for exercising market power."

The European Commission suggests structural remedies² such as divestiture or asset swaps of power plants on a European scale (2007a, p.15), blocking mergers (2007a, p.12), auctioning large scale Virtual Power Plants (2007a, p.12), stimulating the entrance of new electricity generators (2007a, p.16), and increasing competition by enabling generators from abroad to sell electricity over cross-border transmission lines (2007a, p.8).

Several EU member states have experience with some of these structural remedies. For example, in the late nineties, the UK forced dominant electricity generators to divest plants; the two dominant electricity generators NationalPower and PowerGen together divested 6GW in 1996 and another 8GW in 1999, thus lowering concentration (Green, 2006). (However, beginning in 2000, several mergers reversed that trend.³) The UK also experienced a considerable degree of new entry.⁴ Belgium, France, Italy, Denmark, and the Netherlands are using, or used in the past, the auctioning of Virtual Power Plants⁵ to lower market power (Willems, 2006). Finally, several countries increased the capacity of cross-border transmission lines and harmonized their market regimes with neighboring countries to make it easier for generators to sell electricity over borders, thus increasing competition.

The encouragement of cross-border trading – while creating a larger, European, market – is likely to alleviate the concentration problem only marginally, as many electricity companies have merged across borders and become players in neighboring countries (Matthes, Grashof, and Gores, 2007). Increasing competition, while avoiding duplication of investment in generation assets,⁶ is therefore done most efficiently by divestiture, i.e., by enforcing big incumbent power companies to sell parts of their plants, and thus to add to the capacity of competing new entrants. Of interest are also "softer" remedies, such as discouraging incumbents to replace old plants and encouraging new entrants to build generation assets, as this is effectively a form of divestiture (no duplication of investment in generation assets).

² The European Commission (2006b, p. 6) defines structural remedies as "changes to the structure of an undertaking. The most obvious one is the divestiture of an existing business."

³ In 2002 one of the largest generators, PowerGen, merged with TXU Europe, thus adding 3GW to its capacity (Green, 2006).

⁴ The policy of allowing distributors to sign long-term contracts with independent power producers promoted entry of new electricity producers, mainly with new Combined-Cycle-Gas-Turbine (CCGT) generation technology (Newbery, 2002).

⁵ When a generator sells a Virtual Power Plant, he sells part of his production capacity to other generators. This divestiture of generation capacity is called virtual as no production capacity changes hand, and the selling generator remains the owner of all its generation plants (Willems, 2006).

⁶ Entry of new generators is generally not the most efficient solution to increase competition. When there is no need for new generation investment, entry, by adding excessive capacity, imposes deadweight losses on the market that can be larger than the gains of increased competition (Green, 1996). Divestiture is in such case the best alternative solution.

In addition to such structural remedies, policy makers and regulators have voiced interest in behavioral remedies⁷ that, through the appropriate organization of electricity markets, prevent electricity generators to be able to use their market power. The wording of EU law suggests that behavioral remedies ought to be the default setting: "Structural remedies should only be imposed either where there is no equally effective behavioural remedy or where any equally effective behavioural remedy would be more burdensome for the undertaking concerned than the structural remedy" (European Commission, 2006a, p.11). Recent evidence, however, suggests that, in general, behavioral remedies may be less effective than structural remedies (Duso et al., 2011).

Allaz and Vila (1993) make the theoretical case for the introduction of a forward market as a behavioral remedy that increases competitive pressure. Specifically, analyzing competition in a one-shot Cournot set-up, they show that a forward market lowers the amount of market power producers can exert. The contribution of Allaz and Vila (1993) is important since Lévêque (2006) argued that forward contracts are likely to decrease competition. Willems et al. (2009), drawing on Allaz and Vila (1993), provide intuition: In the spot market every producer maximizes his profit given by the profit function $\pi_i = p[q_i + q_{-i}](q_i - f_i) - c[q_i]$, where q_i stands for their own production, q_{-i} for the production of all other producers, and f_i for the number of units sold in the forward market. Taking the derivative with respect to q_i and setting it equal to zero yields $0 = d\pi_i/dq_i \Leftrightarrow -p'[Q](q_i - f_i) = p[Q] - c'[q_i]$. This equation can be rewritten⁸ as $(s_i/E_p^Q) \cdot (1 - (f_i/q_i)) = (p[Q] - c'[q_i]) - c'[q_i]/p[Q]$, where s_i stands for the market share and E_p^Q for the price elasticity of demand. We can see from the formula that the markup (the right-hand side of the equation) decreases in f_i , the number of units sold in the forward market. The more producers sell in the forward market, the closer the outcome in the spot market will be to the Walrasian, or efficient, outcome.

Welfare and consumer surplus thus increase in the number of units sold in the forward market. Do producers have incentives to sell units in the forward market? Allaz and Vila (1993) show that they do. Suppose that only one, privileged, firm could sell in the forward market. In that case this firm has a first mover's advantage. It can, by selling the right number of units in the forward market, reach the Stackelberg equilibrium, which has a higher profit for the privileged firm. Thus, it cannot be a Nash-equilibrium for no firm to sell in the forward market. Consequently, when all firms are entitled to sell in the forward market, they all will, ending up worse off than when none of them had sold. This prisoner's-dilemma type result is standard textbook fare (e.g., Binmore 2007, chapter 10).

⁷ The European Commission (2006b, p. 8) defines a behavioral remedy as "a measure that obliges the concerned undertaking(s) to act in a specific way." Duso, Gugler, and Yurtoglu (2011, p. 980) characterize them as measures that "... effectively tackle the market power concerns potentially raised by mergers without destroying efficiency enhancing synergies."

⁸ Multiplying the left side by $1 = (p[Q] \cdot q_i \cdot Q/p[Q] \cdot q_i \cdot Q)$ gives $-p'[Q](q_i - f_i) \cdot (p[Q] \cdot q_i \cdot Q/p[Q] \cdot q_i \cdot Q) = p[Q] - c'[q_i]$. Rearranging this equation yields $-p'[Q] \cdot (Q/p[Q]) \cdot (q_i/Q) \cdot ((q_i - f_i)/q_i) = (p[Q] - c'[q_i])/p[Q]$.

Allaz and Vila (1993) model the competition as a one-shot game. The Nash equilibrium of a one-shot game and that of a repeated game with predictable ending are theoretically (albeit not necessarily behaviorally; see Selten (1978, 1991) identical. This makes the Allaz and Vila model a fitting theoretical benchmark for an experiment with a fixed, or predictable, number of periods. Of course, in the real world the number of periods may not be fixed, or predictable, and the Nash equilibrium of the stage game is one of many equilibria, some of which may be collusive: see Liski and Montero (2006). Since all treatments have the same number of rounds, between-treatment results ought to be nonetheless informative.

We compare the results of introducing a forward market with those of the best alternative remedy: reducing market concentration by divestiture. We do so for competitor numbers that arguably reflect better the market concentration in the old European states than previous literature has done. We also use realistic cost configurations and tease apart competition and asset effect.

We show that, theoretically and behaviorally, the effects of introducing a forward market might be larger than adding one more competitor in markets both with two and three producers. Previously, Brandts, Pezanis-Christou, and Schram (2008) came to the opposite conclusion for the case of three initial competitors.

The question whether the theoretical predictions of Allaz and Vila (1993) will materialize in the reality of a dynamic setting such as the EU electricity market has clear policy implications. An affirmative answer would suggest that regulators formulate guidelines for, and promote, the design of effective forward markets.

In the following section we first discuss the experimental design (i.e., the basic parameterizations, treatments, underlying working hypotheses) and experimental procedures as well as related literature. In section 3 we report the results focusing on aggregate quantity, efficiency, and production efficiency. In section 4 we conclude. The appendices contain robustness tests and instructions.

2 Experimental design and procedures

2.0 A preliminary remark

We model the competition of generators in the spot and forward markets using the standard Cournot approach (see for example Borenstein & Bushnell, 1999; Le Coq& Orzen, 2006; Bushnell 2007; Newbery, 2009). The supply-function approach of Klemperer and Meyer (1989) has been argued to be a more accurate approach to model competition in electricity markets. The supply-function approach, however, is more complicated and predicts a continuum of equilibria which in turn brings about an equilibrium selection problem (see Devetag & Ortmann, 2007, for a recent review). Wolak & Patrick (2001) provide empirical evidence that dominant generators exert market power by declaring plants to be unavailable, thus shifting the supply curve and suggesting that the Cournot approach is an appropriate modeling choice. In addition, Willems et al. (2009) show that Cournot and supply-function approaches lead to comparable outcomes. In contrast, Green (2004) argues that that the Cournot approach does not accurately characterize producer behavior in England and Wales between 1985 and 2000.

Klemperer and Meyer (1989) show that the Cournot equilibrium outcome is the equilibrium with the maximal exertion of market power in the range of supply-function equilibria and hence, arguably, the natural benchmark. Brandt et al. (2008) show that this is also true for configurations with a forward market. The Cournot approach is thus relevant and interesting and a necessary first step for additional studies using the supply-function approach.

2.1 Treatments

We identify the effects of adding one more competitor through divestiture on the one hand and the effects of introducing a forward market on the other, and then compare the effects.

Table 1 summarizes our treatments and indicates how they compare with earlier studies, namely Le Coq and Orzen (2006) and Brandts et al. (2008), about which more below.

Table 1: Treatments

	2 producers	3 producers	4 producers
Without Forward Market	$M2^{\#}$	M3*	$\mathbf{M4}^{\dagger}$
With Forward Market	$M2F^{\#}$	M3F*	_

The treatment is different from the one tested in Le Coq and Orzen (2006) in that our producers face quadratic marginal costs.

[†] The treatment is different from the one tested in Brandts et al. (2008) in that the market has been created from the market with 3 producers by divestiture, not by entry; producers thus have the same set of assets as those in the market with 3 producers.

* The treatment is identical to the one tested in Brandts et al. (2008).

A key characteristic is the number of producers in the electricity market. While there is some variance, assuming two producers for markets in the New EU Member States⁹ and three producers for markets in the old EU Member States¹⁰ seems a good approximation.¹¹

For the NMS-12 we thus compare outcomes in markets with two producers and without a forward market (M2) with outcomes in such markets with a forward market (M2F). We also compare the difference in outcomes with the difference in outcomes of markets with two (M2) and three producers (M3), when for the latter we add

⁹The New EU Member States are the states that acceded to the EU in or after 2004. With the exception of Cyprus and Malta they are all post-communistic countries: Bulgaria (BG), Cyprus (CY), the Czech Republic (CZ), Estonia (EST), Hungary (H), Lithuania (LT), Latvia (LV), Malta (M), Poland (PL), Romania (RO), Slovakia (SK), and Slovenia (SLO).

¹⁰ The old EU Member States are the states that joined the EU before 2004. These are: Austria (A), Belgium (B), England (UK), Germany (D), Denmark (DK), Spain (E), France (F), Finland (FIN), Greece (GR), Italy (I), Ireland (IRL), Luxembourg (L), the Netherlands (NL), Portugal (P), Sweden (S).

¹¹ The average Hirsch-Herfindahl Index (HHI) for the old (West-European) EU members in 2006 was equal to 3786, which is close to the case where three symmetrical firms compete (HHI = 3333). The new (Central- and East European) EU members had in 2006 a HHI equal to 5558, which is closer to the case where two symmetrical firms compete (HHI = 5000) (Van Koten and Ortmann, 2008). We are aware that extrapolating numbers in the lab to numbers in non-laboratory markets can be fraught with problems (e. g., Selten 1973; see also Huck et al. 2004) but are not aware of evidence that would invalidate our mapping here, so much more so since we are interested in relative (between-treatment) rather than absolute effects.

one more producer by means of divestiture. In other words, we compare the differences of M2F – M2 and M3 – M2. In two other markets, calledM2zc and M2Fzc and not shown in Table 1, we replicated experimental treatments of Le Coq and Orzen (2006) by using their cost function (zero production costs). Our results are in line with those of Le Coq and Orzen (2006); since these treatments were robustness tests, they are reported in Appendix A2.2.

For the EU-15 we compare outcomes in markets with three producers and without a forward market (M3) with outcomes in such markets with a forward market (M3F). We also compare the difference in outcomes with the difference in outcomes of markets with three (M3) and four producers (M4), when for the latter we add one more producer by means of divestiture. In other words, we compare the differences of M3F - M3 and M4 - M3.

2.2 Earlier experiments

Le Coq and Orzen (2006) conducted experiments in markets with two producers with and without a forward market and compared the outcomes with those in a market with four producers (with and without a forward market); importantly, their producers faced zero production costs. In line with earlier experiments, such as Huck et al. (2004), Le Coq and Orzen (2006) found that producers competed less (more) than predicted with two (four) producers. A forward market had a positive effect, but weaker than expected. Adding two more producers increased output significantly more than introducing a forward market.

Le Coq and Orzen (2006) consider the effects of a forward market in a market with two (and four) producers. While speaking possibly to the reality of electricity markets in the NMS-12 countries, the number of relevant competitors tends to be threeforEU-15countries. Moreover, the assumption that producers have zero marginal costs is unrealistic for all their scenarios. In our experiment, producers therefore face, more realistically (e.g., Newbery, 2002) and in line with Brandts et al. (2008), quadratic marginal costs.

Brandts et al. (2008) conducted experiments in markets with three producers with, and without, a forward market and compared the outcomes with those in a market with four producers (without a forward market). Producers had quadratic marginal costs. Brandts et al. (2008) find that a forward market significantly increases the quantity supplied, but that entry of a new generator increases the quantity supplied significantly stronger than the addition of a forward market.

Brandts et al. (2008) confound, however, two effects in their study: a competition effect¹² and an asset effect. The competition effect is brought about by an additional market participant; this makes the market more competitive and results in lower prices and a larger total number of units supplied. The asset effect is brought about by the additional production assets that are built and paid by a new entrant. Because Brandts et al. (2008) consider the entrance of a new generator, their treatment combines the competition and the asset effect: entrance increases competition, but also the aggregate size of production assets in the market, which reduces the aggregate cost and thus gives an extra incentive to increase production. Thus, assuming efficient production, any

¹² Brandts et al. (2008) call this effect the "number effect".

given level of aggregate production (the production of all producers together) is produced cheaper in the market with four producers than in the market with three producers. We conjectured that the asset-effect confound led to an overestimation of the effects of adding one more competitor in their study. Moreover, the welfare effects Brandts et al. (2008) report are not conclusive, as they do not take into account properly the very high costs of the increase in the asset base (the cost of building extra production plants).¹³

We therefore focus on the effect of divestiture as a benchmark for the effects of introducing a forward market, thus eliminating the asset effect confound and insulating the competition effect. To allow for comparisons, we drew (to the extent possible) on Brandts et al. (2008) and on Le Coq and Orzen (2006) to parameterize our experiment.¹⁴

2.3 Demand and supply

As in Brandts et al. (2008), the demand schedule is p[Q] = Max[0, 2000 - 27Q], $Q \ge 0$. Also as in Brandts et al. (2008), we chose to program the demand side rather than have it enacted by experimental participants. This might reduce demand uncertainty which in turn is likely to influence (the speed of) convergence in our market. We believe it to be unlikely for this choice to interact with treatment effects in a differential and significant manner.

For our main treatments we model generators as incurring quadratic marginal costs. Marginal costs of producing electricity usually have a hockey-stick shape, i.e., they are flat with a sharp increase when capacity constraints become binding (Newbery, 2002). We consider quadratic marginal costs to be a reasonable approximation to the real marginal costs of electricity generators.

To be able to compare our results with those of Brandts et al. (2008), we also use the same specification of the costs for markets with three producers, abbreviated by M3for the market without forward market and by M3F for the market with forward market. Brandts et al. (2008) set the marginal cost of producing the i^{th} unit for

¹³ Building electricity generation is very costly: When competition is lacking but there is no shortage of electricity production capacity, entrance leads to wasteful duplication of assets (Green, 1996).

¹⁴Another paper addressing forward markets is Ferreira, Kujal and Rassenti (2009). Ferreira et al. (2009) find that forward markets have a positive effect on the aggregate production with inexperienced subjects, but no - or a negative - effect with experienced subjects. Producers in their experiment face linear rather than quadratic marginal costs. Also, subjects had a mere 30 seconds to make a decision and no extra time to review the results, whereas the subjects in our study had 60 seconds to make a decision and another 60 seconds to review the result of that decision. Moreover, in the experiment of Ferreira et al. (2009) the treatments with experienced subjects were different from the treatments with inexperienced subjects in important details. For example, the experienced subjects did not have production costs and the demand function they faced was different. In addition, due to random matching, the experiment draws on very few independent data points (1 or 2).

We found their result that experience seemed to decrease the competitive effect of a forward market nonetheless interesting and, as a robustness test, ran additional sessions with experienced subjects for some of our treatments. Our subjects were experienced in the sense that they had participated in the experiment earlier. As a matter of fact, our experienced subjects were assigned to exactly the same treatment as the one in which they had participated earlier (with the exception for experienced subjects in treatment M2, where some subjects had participated previously in M3 or M4). We do not find that experienced subjects have a lower aggregate production than inexperienced subjects. On the contrary, our experienced subjects supply a slightly higher production which is in line with the experimental literature on the effect of experience on public good provision (Ledyard, 1995). We report the detailed results as a robustness test in Appendix A4.

a producer equal to $mc_3[q] = 2q^2$, cumulative costs can thus be calculated as $c_3[q] = \sum_{x=1}^{q} 2x^2 = 2/3 q^3 + q^2 + 1/3 q$.

The market with four producers, M4, is created from the market with three producers, M3, by divestiture; each of the three producers divests $\frac{1}{4}$ th of their assets, and these three sets of assets are used to create a fourth, identical producer. The markets with two producers, M2 and M2F, are created from the market with three producers, M3, by reversing the divestiture process (merger): one of the producers is split in halves and their assets are merged to the two remaining producers to create two larger, identical, producers. With the cost function of a producer in M3 given, the cost functions of producers in M2 and M4 can be calculated: $c_2[q] = 2/27 q^3 + 2/3 q^2 + 1/3 q$, and $c_4[q] = 22/27 q^3 + 4/3 q^2 + 1/2 q$.¹⁵

Note that the electricity generation asset base is the same for all three markets (M2, M3, and M4). Therefore, when generators make identical choices and the aggregate production is equal over different markets, the aggregate costs must also be equal.

Table 2 summarizes the production costs for each generator in the market with two (M2), three (M3) and four (M4) generators, and identifies aggregate production in one market being equal to that in another market by bold numbers and colored cells. For example, the aggregate production in M2 (M4) is equal to that in M3 when the total number of units can be divided both by two (four) and three.

¹⁵ If all the assets in M3 would be merged into one single firm (M1), then this single firm would minimize its costs by dividing production equally over the three plants. The total costs of the firm in M1 would thus be $c_1[q] = 3 \cdot c_3\left[\frac{q}{3}\right]$. Likewise, if we started with M2 and merged the assets of the two firms into one single firm, then the cost function of the single firm in M1 would be given by $c_1[q] = 2 \cdot c_2\left[\frac{q}{2}\right]$. Now we can derive the cost function for a firm in M2: from $2 \cdot c_2[q/2] = c_1[q] = 3 \cdot c_3[q/3]$ follows that $c_2[q] = 3/2 c_3[2/3 q] = 8/27 q^3 + 2/3 q^2 + 1/3 q$. In the same manner we can derive the cost function for a firm in M4: $c_4[q] = 3/4 c_3[4/3 q] = 32/27 q^3 + 4/3 q^2 + 1/3 q$. Notice that for marginal costs the following equality holds: $c_2'[3/2 q] = c_3'[q] = c_4'[3/4 q]$. In line with intuition, the marginal costs of a firm in M3 thus increase faster (slower) than in M2 (M4).

Table 2: ¹⁶	Overview	of aggregate	costs of	producing
-------------------------------	----------	--------------	----------	-----------

Market with two producers (after merger)			Market with three producers (original market)				Market with four producers (after divestment)							
E	ach Prod	lucer	Agg	regate	Eac	h Proc		Aggre		Ea	Each Producer Agg		Aggr	egate
Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs	Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs	Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs
Ν	MC	TC	2*N	2* TC	Ν	MC	TC	3*N	3*TC	Ν	MC	TC	4* N	4*TC
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	1	1	2	2	1	2	2	3	6					
2	5	6	4	11						1	3	3	4	11
3	9	15	6	30	2	8	10	6	30					
4	16	31	8	62						2	12	15	8	62
5	24	55	10	111	3	18	28	9	84					
6	35	90	12	180	4	32	60	12	180	3	30	45	12	180
7	47	137	14	273	5	50	110	15	330		<i>~</i> .	00	1 -	20.4
8	60 76	197	16	394 546		72	100	10	- 4 -	4	54	99	16	394
9 10	76 93	273 366	18	546	6	12	182	18	546	5	84	192	20	722
10	113	479	20 22	733 957	7	98	280	21	840	3	04	183	20	733
11	133	612	22	1224	8	128	408	21	1224	6	123	306	24	1224
12	155	768	24	1536	<u> </u>	128	570	24	1710	0	123	300	24	1444
13	130	948	20	1330	,	102	570	21	1/10	7	168	474	28	1897
15	207	1155	30	2310	10	200	770	30	2310	,	100	- / -	20	1077
16	235	1390	32	2779	10	200		20	2010	8	221	695	32	2779
17	264	1654	34	3308	11	242	1012	33	3036					>
18	296	1950	36	3900	12	288	1300	36	3900	9	280	975	36	3900
19	329	2279	38	4559	13	338	1638	39	4914					
20	365	2644	40	5287						10	347	1322	40	5287
21	401	3045	42	6090	14	392	2030	42	6090					
22	440	3485	44	6970						11	420	1742	44	6970
23	480	3965	46	7931	15	450	2480	45	7440					
24	523	4488	48	8976	16	512	2992				502	2244	48	8976
25	567	5055	50	10109	17	578	3570	51	10710					
26	612	5667	52	11334						13	590	2834	52	11334
27	660	6327	54	12654	18	648	4218	54	12654			e	_	
28	709	7036	56	14073						14	684	3518	56	14073
29	761	7797	58	15593	19	722	4940		14820		= - =	1005		
30	813	8610	60	17220	20	800	5740	60			787	4305	60	17220
31	868	9478	62	18956	21	882	6622	63	19866		007	5201	C 4	2000-
32	924	10402	64	20805	22	0.00	7500		22770	16	896	5201	64	20805
33 34	983 1043	11385 12428	66 68	22770 24855	22	968	7590	66	22770	17	1013	6214	68	24855
35	11043	13532	08 70	24855 27064	23	1058	8648	60	25944	1/	1013	0214	08	24033
36	1168	13332	70	27004 29400	23	1152	9800	72		18	1136	7350	72	29400
30	1233	15933	72	31867	24		11050	72		10	1150	1350	12	27400
38	1301	17234	74	34467	25	1250	11050	15	55150	19	1267	8617	76	34467

¹⁶ Numbers have been rounded to the nearest whole number.

39	1369	18603	78	37206	26	1352	12402	78	37206					
40	1440	20043	80	40086						20	1405	10022	80	40086
41	1512	21555	82	43111	27	1458	13860	81	41580					
42	1587	23142	84	46284	28	1568	15428	84	46284	21	1549	11571	84	46284
43	1663	24805	86	49609	29	1682	17110	87	51330					
44	1740	26545	88	53090						22	1702	13273	88	53090
45	1820	28365	90	56730	30	1800	18910	90	56730					
46	1901	30266	92	60533						23	1860	15133	92	60532
47	1985	32251	94	64501	31	1922	20832	93	62496					
48	2069	34320	96	68640	32	2048	22880	96	68640	24	2027	17160	96	68640

The areas with thick boxes in a row show that the aggregate costs (in bold) are equal for markets of different sizes when the aggregate production is the same (assume efficient production).

To not unduly add to our subjects' cognitive load, we presented costs that were rounded according to the following rounding rules:

- All numbers smaller than 100 were rounded to the nearest integer: Thus, for example, 21.2 were rounded to 21 and 46.6 to 47.
- When a number was larger than 100, it was rounded to the nearest integer divisible by 5: Thus, for example, 121 was rounded to 120 and 147 to 150.
- When a number was larger than 1000, it was rounded to the nearest integer divisible by 10: Thus, for example, 1021 was rounded to 1020 and 1047 to 1050.
- When a number was larger than 10000, it was rounded to the nearest integer divisible by 50: Thus, for example, 10021 was rounded to 10000 and 10043 to 10050.

As a result these rounding rules, some of the aggregate total costs in Table 2 are different. The discrepancy is negligible, however; on average the absolute discrepancy is 0.12%. For the "rounded numbers" version of Table 2, see Table A1 in the Appendix.

The numbers we obtained after this rounding procedure were also the numbers we used to calculate the theoretical predictions.¹⁷

2.4 Theoretical Predictions and Hypotheses

With demand given and the cost function defined, the profit function is given by $\pi_{i,MS} = p[q_i + q_{-i}](q_i - f_i) - c_{MS}[q_i]$ for market size $MS \in \{2,3,4\}$, where the cost functions are defined as above by $c_2[q] = 8/27 q^3 + 2/3 q^2 + 1/3 q$, $c_3[q] = \sum_{x=1}^{q} 2x^2 = 2/3 q^3 + q^2 + 1/3 q$, and $c_4[q] = 32/27 q^3 + 4/3 q^2 + 1/3 q$. We can now determine the Nash-equilibria for each of the treatments, keeping in mind that the subjects can choose only integer values for production.

¹⁷ Using the exact numbers gives virtually identical theoretical predictions.

	NE M2	Μ	Nash-	NE M3	NE M3F	NE M4	Walras (M2, M2F)	Walras (M3, M3F)	Walras (M4)	JPM (M2, M2F)	JPM (M3)	JPM (M4)
$q_{\scriptscriptstyle ti}^{\scriptscriptstyle f}$	_	2	11	_	5	-	_	_	_	_	-	_
$q_{\scriptscriptstyle ti}$	20	20	22	14/15 ¹⁸	15	11	25/26 ¹⁹	17	13	16	11	8
q_{t}	40	40	44	43	45	44	51	51	52	32	33	32
p_t	920	920	812	839	785	812	623	623	596	1136	1109	1136
Prod.S.	31520	31520	28768	29537	27885	28768	21053	21063	19672	33572	33567	33572
Cons.S.	21060	21060	25542	24381	26730	25542	34425	34425	35802	13392	14256	13392
Total S.	52580	52580	54310	53918	54615	54310	55478	55488	55474	46964	47823	46964
<i>Eff.(%)</i>	94.8	94.8	97.9	97.2	98.4	97.9	100	100	100	84.7	86.2	84.7

Table 3: Theoretical predictions electricity markets

Explanation of row terms: NE stands for the Nash-equilibrium, Walras for the Walrasian (welfare optimizing) equilibrium, and JPM for joint profit maximization (collusion).

Table 3 shows the theoretical predictions for our main treatments M2, M2F, M3, M3F, and M4.²⁰ The prefix NE stands for Nash equilibrium, Walras for the efficient solution (the outcome that maximizes the total surplus), ²¹ and JPM for Joint Profit Maximization (the monopoly solution).²²

²⁰ The Nash equilibria have been numerically determined with *MATHEMATICA*. The set of programs can be downloaded as RAR file named "Nash-Equilibria with Forward Markets. rar", at <u>https://sites.google.</u>

²¹ We define efficiency, following Brandts et al. (2008), as the joint consumer and producer surplus realized in the experiment divided by the maximum joint consumer and producer surplus (the Walrasian level of joint surplus).

²² The market outcomes for JPM (M3, M3F), JPM (M4), NE (M3), NE (M3F), Walras (M3, M3F), and Walras (M4) in this experiment are identically to those in Brandts et al. (2008), and our predictions are almost identical to the ones reported in their paper. Key differences are: Using the functions without a rounding procedure, we find that for the Nash-equilibrium with three producers NE (M3) the price is equal to 839 (rather than 866). For the welfare maximizing outcome with four generators, Walras (M4), we find that all three generators produce 14 units and one of them 15 units, instead of all of the generators producing 14 units. Total welfare is therefore 60799 and not 60788. For the monopoly case with four generators, JPM (M4), two generators produce 9 units and two 8 units, instead of all of them 8 units. As a result the producer surplus is higher, 34832 instead of 34728, the consumer surplus is lower, 15147 instead of 17010, and efficiency is lower, 82. 2% instead of 85. 1%. Also, when calculating the Nash-equilibrium with four producers with the cost function Brandts et al. (2008) used, we find that the price is equal to 677 rather than 704. Also, the producer surplus of M4 in this case is equal to 27635 rather than 27638.

For the Nash-equilibrium with three producers and a forward market (M3F), we find a unique symmetrical Nash-equilibrium in pure strategies where each producer sells 5 units in the forward market, and 10 additional units in the spot market. This is different from Brandts et al. (2008) who consider for their forward market (M3F) treatment partially mixed strategies (for the choice of additional units) and find an equilibrium where each producer sells 6 units in the forward market, and an additional 9 with probability . 944 and 10 with probability 0. 056. As we find a unique symmetric Nash-equilibrium in pure strategies, we do not follow Brandts et al. (2008) in broadening the equilibrium concept for this

¹⁸ One generator produces 15 units, the other two 14 units.

¹⁹ One generator produces 26 units, the other two 25 units.

<u>com/site/slvstrnl/ElectricityMarketsExperiment</u>. The predictions are based on the cost functions with numbers rounded according to the rounding procedure described in the body of the text. Predictions based on the continuous cost functions are, except for the M2F condition, mostly identical: the chosen quantities are identical, and the difference in total surplus is less than 0. 02% and hence negligible. In the M2F condition the chosen quantities in the low Nash-equilibrium are lower when using the continuous functions – 40 instead of 42, hence the difference in total surplus is1. 8%.

Explanation of column terms: q_{ti}^{f} stands for the forward production of each producer, q_{ti} for the total production of forward (if it is present) and spot market for each producer, q_{t} for the total *aggregate* production of forward (if it is present) and spot market for all producers together, p_{t} for the price, *Prod.S* for producer surplus, *Cons.S* for consumer surplus, *Total.S* for total surplus, *Eff.*(%) for efficiency in percentage.

The theoretical predictions give us, for the particular parameterizations chosen, an indication of the effect on aggregate production and efficiency of either introducing a forward market or of adding one more competitor. We use these indications to formulate the hypotheses in Table 4.

Hq.1 (Quantity)	HΩ.1 (Efficiency)	HΦ.1 (Production Efficiency)
- $q(M3F) > q(M4) > q(M3)$	- $\Omega(M3F) > \Omega(M4) > \Omega(M3)$	- $\Phi(M3F) = \Phi(M3)$
		- $\Phi(M4) < \Phi(M3)$
Hq.2 (Quantity)	HΩ.2 (Efficiency)	HΦ.2 (Production Efficiency)
- $q(M3) > q(M2F) > q(M2)$	- $\Omega(M3) > \Omega(M2F) > \Omega(M2)$	- $\Phi(M2F) = \Phi(M2)$
		- $\Phi(M3) < \Phi(M2)$
Hq.3 (Quantity)	HΩ.3 (Efficiency)	
- $q(M4) > q(M2F)$	- Ω (M4) > q (M2F)	

 Table 4: Hypotheses

Hypothesis 1 makes comparisons between markets with three and four producers. Both introducing a forward market and adding one more competitor to a market with three producers increases aggregate production, but introducing a forward market increases aggregate production more. Using q(x) to denote aggregate production in market structure x,²³ we thus conjecture that the remedies can be ranked as follows: q(M3F) > q(M4) > q(M3). Likewise, both remedies also increase efficiency, but introducing a forward market again is predicted to increase efficiency the most. Using $\Omega(x)$ to denote efficiency in market structure x, we thus conjecture that the remedies can be similarly ranked: $\Omega(M3F) > \Omega(M4) > \Omega(M3)$. We also test for effects on production efficiency. We define production efficiency, following Brandts et al. (2008), as the actual producer surplus divided by the producer surplus had production taken place in the most efficient manner. As marginal costs are quadratic, production is fully efficient only if the aggregate production is evenly distributed over the producers. Like Brandts et al. (2008) we assume that more producers in a market should make it more difficult to achieve an even distribution, but that introducing a forward market should not have an effect. We thus conjecture $\Phi(M4) < \Phi(M3)$, and $\Phi(M3F) = \Phi(M3)$.

treatment (mixed strategies are also not considered for the other treatments). We note that the total (expected) production by all three producers is the same according to our computations and those reported by Brandts et al. (2008) - 45 units. ²³ To facilitate comparisons with related literature, we use the same notation as Brandts et al. (2008). Also parts of our presentation have been inspired by Brandts et al. (2008).

Hypothesis 2 makes comparisons between markets with two and three producers. Adding one more competitor to a market with two producers increases aggregate production. Introducing a forward market in a market with two producers results in two welfare-rankable Nash-equilibria: one with quantity 40 ("low")and one with quantity 44 ("high"). We have no prior and we thus conjure that each Nash-equilibrium has an equal probability to be played. We therefore conjecture that the remedies can be ranked as follows: q(M3) > q(M2F) > q(M2).²⁴ Both remedies also increase efficiency. We conjecture that: $\Omega(M3) > \Omega$ (M2F) $> \Omega(M2)$. For productive efficiency we assume again that more producers in a market should make it more difficult to achieve an even distribution, while introducing a forward market should not have an effect. We thus conjecture $\Phi(M3) < \Phi(M2)$ and $\Phi(M2F) = \Phi(M2)$.

Hypothesis 3 makes comparisons between markets with two and four producers. The theoretical results suggest that the effect of introducing a forward market is not as large as that of adding two more competitors; we thus conjecture q(M4) > q(M2F) and $\Omega(4) > \Omega(M2F)$.

2.5 Experimental procedures

The experimental sessions were conducted in October 2009, December 2009, and April 2010 in Prague at CERGE-EI.²⁵ Our subjects were students at the Charles University or at the University of Economics, both located in Prague. A total of 198 students participated. The sessions with a forward market lasted about 2 hours, the sessions without forward market lasted about 90 minutes. The subjects earned on average 382 Czech Koruna per hour including a show-up fee of 100 Korunas. Subjects thus earned on average 640 Korunas²⁶, with the minimum earning being 330 and the maximum earning being 1080 Korunas, indicating that our experiment was well incentivized on the margin. The same experimenter read the (English language) instructions to the subjects for all sessions.

The market simulation was programmed in Z-Tree (Fischbacher, 2007). As mentioned, the demand schedule was pre-programmed. Experimental participants enacted the roles of producers and sellers. They were not shown the demand schedule but were given on screen, and as printout, an earnings-table. During the experiment subjects were shown, after they had submitted their choice for the (forward) spot market, the following

²⁴ The ranking depends on whether the high or the low Nash-equilibrium is mostly played. When only the lower is played, the ranking is: Q(M2F) = Q(M2), Q(M3) > Q(M2), AND Q(M2F) < Q(M3). When only the higher is played, the ranking is: Q(M2F) > Q(M2), Q(M3) > Q(M2), AND Q(M2F) > Q(M3). Assuming that both Nash-equilibria will be played with equal probability results in the predictions that Q(M2F) > Q(M2) and Q(M2F) < Q(M3).

²⁵ We obtained in October 2009 four data points for each treatment, in December 2009 four data points for M2zc, M2Fzc, M2F, M2, M3, and three data points for treatments M3F and M4, and in April 2010 three data points for M2zc, M2Fzc, M2F, M2, M3, and four data points for the treatments M3F and M4. The original game plan was to obtain additional four data points for all treatments in December 2009. Unusual numbers of no-shows for treatments M3F and M4 derailed that plan. Several pilot sessions were run during the summer of 2009. None of the subjects in the pilot (mostly CERGE-EI students) participated in the regular sessions. We also ran an experimental session in October 2010 as a robustness test for the effect of subject experience. The October 2010 data are only used in the robustness test reported in Appendix A4. ²⁶ This amount equaled about €26 (and about €36at official purchasing power parity, and even more on student-specific purchasing power parity). In other words, the earnings were salient and certainly in line with standard remuneration practices in experimental economics.

outcomes: the aggregate quantity sold, the resulting price per unit on the (forward) spot market, their own profit, and their own marginal and cumulative costs. Subjects were not shown their competitors' profits, costs, or individual contributions to the aggregate quantity sold. In the treatment with two subjects, M2 and M2F, subject could, however, calculate the competitor's individual contribution.

In the treatments with a forward market every round had two periods, the first period for the forward market and the second period for the spot market. In the first period, producers decided how many units to produce and to sell in the forward market. Producers sold units to traders. The units that producers sold were promises to produce and to deliver units to traders in the second period (in the spot market). The units that were sold in the forward market were thus produced later, in the second period.

In the forward market two pre-programmed traders competed in prices for the total number of units that were offered.²⁷ Traders were programmed to act rationally, with their actions defining a demand schedule, which we presented to our producers.²⁸ The trader that offered the highest price per unit won all units. When they offered the same price – which they do in equilibrium – a winner was drawn at random. As the pre-programmed traders were rational and competed in prices, they could predict the Nash-equilibrium spot price and offer this price for the units offered in the forward market. The pre-programmed traders didn't observe the number of units offered by each producer, only the total number of units. They assumed that producers offered an equal number of units in the forward market.²⁹ Using this assumption, the traders were programmed to predict, conditional on the total number of units offered in the forward market, q^f , the Nash-equilibrium total production in the spot market:

 $q^{NE}[q^f]$.³⁰ By substituting the predicted total production in the spot market in the demand schedule, the traders predicted the Nash-equilibrium price in the spot market: $p[q^{NE}[q^f]]$. As traders offered the Nash-equilibrium price for all units, $p[q^{NE}[q^f]]$ defines the demand schedule in the forward market. Producers were shown this forward-market demand schedule in the first period of each round; they could thus use this information when deciding on the number of units to offer in the forward market. At the end of the period, all producers were paid the number of units they produced in the forward market times the price per unit minus the production cost.

²⁷ In our experiment traders are, as in Le Coq & Orzen (2006), pre-programmed. The manner in which traders are represented in the experiment should not significantly affect outcomes, as traders are middlemen (between producers in the forward market and end demand in the spot market). Earlier experimental evidence indicates that the presence of strategically acting middlemen generally does not alter allocations and that the profit of middlemen converges to zero quickly (Plott & Uhl, 1981). Brandts et al. (2008) use experimental subjects as traders and find indeed that traders earn only a small fraction (about 8%) of the profits that a producer earns.

²⁸ The full consolidated instructions can be downloaded at <u>https://sites.google.</u> <u>com/site/slvstrnl/electricitymarketsexperiment</u>.

⁽For ease of access, and refereeing purposes, the consolidated instructions are submitted in the accompanying file).

²⁹ When the total of units sold forward is not divisible by the number of producers in the market, the trader assumes that the numbers of units sold forward by each producer are as close as possible. For example, when the total number of units sold forward is 14 in M3, the trader assumes that two producers sold 5 units and one producer 4 units. Violation of this assumption affects the prediction only minimally.

³⁰ This procedure is virtually identical to the one used in Le Coq and Orzen (2006).

Appendix A3 shows the predicted aggregate production and price in the spot market, conditional on the total production in the forward market (stage A).

In the second period of each round, producers decided the number of units to produce and sell in the spot market. The pre-programmed traders sold all the units they bought. The price per unit was determined by substituting the number of units sold by all producers in the forward and spot market together for Q in the demand schedule p[Q] = Max[0, 2000 - 27Q]. All producers were paid the number of units they produced in the spot market times the price per unit minus the production cost.

3. Results

Being conservative, we treat each set of sellers ("a group") in a particular treatment as one data point only. We thus have 11 statistically independent data points for all treatments; since each participant took part in one experimental session only, data points are also independent across treatments. None of the participants went bankrupt.

Each treatment consisted of 24 rounds. For our statistical tests, we use only the last 12 rounds of the data, as the experiment is complicated and, we know – for example, from relatively easy auction experiments – that subjects need several rounds of trading to become familiar with the laboratory environment before they react to the embedded incentives (Hertwig and Ortmann, 2001).³¹

Following Le Coq and Orzen (2006), we test for disparity with the Nash-equilibrium predictions using twosided Wilcoxon one-sample signed-rank tests (two-sided signed-rank tests), unless indicated otherwise. For comparison between the averages of the treatment in our experiment, we use, following Brandts et al. (2008), Ftests based on an OLS regression of the dependent variable on the 5 treatment dummies, M2, M2F, M3, M3F, and M4, without a constant (F-tests). The error terms are adjusted for clustering at the group level by using the robust Huber/White/sandwich estimator (Froot, 1989). In addition, we ran robustness tests using, as did Le Coq and Orzen (2006), Wilcoxon rank-sum tests (rank-sum tests). These tests confirmed most of the results presented here.³² The results of these tests can be found in Appendix A2.1.

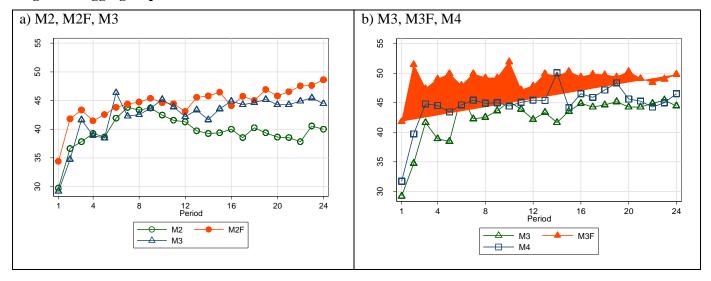

3.1. Aggregate Quantity

Figure 1shows the evolution of total (aggregate) quantities sold per period, averaged over treatment groups. Treatments with two producers are represented by circles, with three producers by triangles, and with four producers by squares. The treatments without forward markets are represented by open circles, triangles or squares, the treatments with forward markets by filled circles or triangles.

³¹ Including all 24 rounds does not change our results qualitatively and most results remain strongly significant.

³² We also ran Jonckheere tests for all our hypotheses. As these tests confirm the results of our F-tests and rank-sum tests, we do not report them.

The trade volume in all treatments starts out rather low³³ but then moves quickly into the direction of the Nash-equilibrium. Production stabilizes between rounds 8 and 12.

In the M2 and M2F conditions the standard error is relatively high. Of the treatments without forward markets, M2 and M3 are not significantly different from the Nash-equilibrium predictions (two-sided signed rank test, both p-values > 0.32), while M4 is significantly larger (p-value = 0.068). Of the treatments with a forward market, the production in M3F is significantly higher than the Nash-equilibrium (p-value = 0.004) and production in M2F is significantly higher than the low Nash-equilibrium (p-value = 0.021) but not significantly different from the high Nash-equilibrium (p-value = 0.248).

Without a forward market, when the number of competitors is equal to two (three or four), production tends to be smaller (larger) than the Nash-equilibrium, which is in line with earlier findings (Le Coq and Orzen, 2006; Huck, Normann, and Oechssler, 2004). We see no evidence for stable collusion; indeed the data suggest the opposite. A regression of aggregate production on the period of the experiment shows a significant upwards slope, suggesting that over time, as subjects become more experienced with the task, they become less likely to collude

Table 5 shows the overall average aggregate production per treatment group, with the standard error in parenthesis.³⁴ The row below gives the size of the observed aggregated quantity relative to the Nash-equilibrium prediction in percentages.

³³ It is likely that these trajectories are anchored by the examples in the instructions in which we used low numbers to facilitate understanding of the basic relationships. Loss averse behavior in the light of initially considerable uncertainty could be another explanation.

³⁴ The standard error is computed based on the averages for each of the 11 independent groups over the last 12 rounds.

In the M2 and M2F conditions the standard error is relatively high. Of the treatments without forward markets, M2 and M3 are not significantly different from the Nash-equilibrium predictions (two-sided signed rank test, both p-values > 0.32), while M4 is significantly larger (p-value = 0.068). Of the treatments with a forward market, the production in M3F is significantly higher than the Nash-equilibrium (p-value = 0.004) and production in M2F is significantly higher than the low Nash-equilibrium (p-value = 0.021) but not significantly different from the high Nash-equilibrium (p-value = 0.248).

Without a forward market, when the number of competitors is equal to two (three or four), production tends to be smaller (larger) than the Nash-equilibrium, which is in line with earlier findings (Le Coq and Orzen, 2006; Huck, Normann, and Oechssler, 2004). We see no evidence for stable collusion; indeed the data suggest the opposite. A regression of aggregate production on the period of the experiment shows a significant upwards slope, suggesting that over time, as subjects become more experienced with the task, they become less likely to collude.

	M2	M2F	M3	M3F	M4
Average	39.3 (1.52)	46.3 (2.06)	44.2 (1.22)	49.6 (0.61)	46.2 (0.98)
production					
% of NE	98.7%	116 %/ 105% ³⁵	102.9%	110.1%	105.0%
prediction					
Number of	N = 11	N = 11	N = 11	N = 11	N = 11
observations					
% of NE	93. 2%, Le Coq	93.8%, Le Coq	102.7%, Huck	103.6%,	113.7%, Le Coq
prediction -	and	and Orzen	et al. (2004)	Brandts et al.	and Orzen
earlier studies ³⁶	<i>Orzen</i> (2006)	(2006)	98.9%, Brandts	(2008)	(2006) 102.8%,
	92.7%, Huck et		et al. (2008)		Brandts et al.
	al. (2004)				(2008)
					102.9%, Huck
					et al. (2004)

Table 5 Production averages in the last 12 rounds

Table 6 **Error! Not a valid bookmark self-reference.** presents the results of the F-tests based on OLS regressions.³⁷

³⁵ The first number gives the percentage of output relative to the low production Nash-equilibrium, the second number relative to the high production Nash-equilibrium.

³⁶ The averages by Huck et al. (2004) reported here are based on their meta-analysis of 19 experiments with Cournot competition. A Wilcoxon signed-rank test indicates that our results are not significantly different from their results (p-values for M2, M3 and M4 are 0. 155, 0. 657 and 0. 534 respectively). Compared with Brandts et al. (2008), the production is significantly higher in condition M3F (p < 0.006) and not significantly different in the conditions M3 (p-value = 0. 213) and M4 (p-value = 0. 534). Compared with Le Coq and Orzen (2006), production is significantly higher in conditions M2F (p-value = 0. 010 for the low and p-value = 0. 033 for the high Nash-equilibrium) and M4 (p-value = 0. 010) and not significantly different in condition M2 (p-value = 0. 182). For comparison, we also ran treatments with zero production costs, M2zc and M2Fzc. In these treatments the average production is 83% of the Nash-equilibrium prediction which is significantly lower than Le Coq and Orzen (2006) found (both p-values < 0. 041). The results of these tests may be found in Appendix A2.

	OLS regression, with correction for clustering on group level, followed by an one-sided F-test on equality of the coefficients (Clustering on group)						
Hq.1 - Markets with 3 producers	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
Number of observations (independent groups)	N = 792 (11)	N = 924 (11)	N = 924 (11)				

Table 6: Effects of one more competitor and forward market on quantities, Hq.1, Hq.2, and Hq.3

Hq.2 - Markets with 2 producers	q(M2F) > q(M2)*** (p = 0.003)	q(M3) > q(M2)** (p = 0.006)	q(M3) > q(M2F) (p = 0.813)
Number of observations	N = 528	N = 660	N = 660
(independent groups)	(11)	(11)	(11)

Hq.3	q(M4) > q(M2F) (p = 0.521)
Number of observations	N = 792
(independent groups)	(11)

Results testing Hypothesis q.1: In markets with 3 competitors, introducing a forward market increases production, and the effect is stronger than adding one more competitor, q(M3F) > q(M3), and q(M3F) > q(M4).

We find partial support for Hypothesis q.1:

- $q(M3F) \le q(M3)$ is REJECTED in favor of q(M3F) > q(M3), p-value < 0.001.
- $q(M4) \le q(M3)$ is NOT rejected in favor of q(M4) > q(M3), p-value = 0.105.
- $q(M3F) \le q(M4)$ is REJECTED in favor of q(M3F) > q(M4), p-value = 0.002.

Introducing a forward market increases aggregate production 12% in markets with three competitors (q(M3F) > q(M3), p-value < 0.001). This confirms earlier findings such as in Brandts et al. (2008). Adding one more competitor in markets with three competitors increases aggregate production 4%, and this effect is barely significant, p-value = 0.105). We find that introducing a forward market increases the aggregate production by 7% more than increasing competition by adding one more competitor, and this difference is strongly significant (q(M3F) > q(M4), p-value = 0.002).

³⁷ As a robustness test we also compared the averages for the groups using a two-sample Wilcoxon rank-sum (Mann-Whitney) test. The hypotheses accepted (rejected) are the same, except for Hypothesis 2. b (which becomes insignificant) and Hypothesis 3. c (which becomes significant). See the Appendix for a detailed analysis.

Results testing Hypothesis q.2: In markets with 2 competitors, both introducing a forward market and adding one more competitor increases production, and the latter effect is not stronger than the first(M2F) > q(M2), q(M3) > q(M2), and NOT q(M3) > q(M2F).

We find partial support for Hypothesis q.2:

- $q(M2F) \le q(M2)$ is REJECTED in favor of q(M2F) > q(M2), p-value = 0.003.
- $q(M3) \le q(M2)$ is REJECTED in favor of q(M3) > q(M2), p-value = 0.006.
- $q(M3) \le q(M2F)$ is NOT rejected in favor of q(M3) > q(M2F), p-value = 0.813.

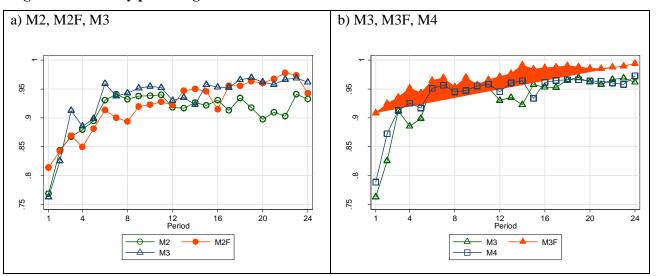
In line with the theoretical predictions, introducing a forward market increases aggregate production by18% in markets with two competitors. This increase is strongly significant (q(M2F) > q(M2), p-value = 0.003). Adding one more competitor in markets with two competitors increases aggregate production by 12%. This increase is significant (q(M3) > q(M2), p-value = 0.006). Adding one more competitor does not increase aggregate production significantly more than introducing a forward market (p-value = 0.813). We thus cannot reject $q(M2F) \ge q(M3)$. Our data in fact suggest the ranking q(M2F) > q(M3), as q(M2F) is 5% higher than q(M3).

Results testing Hypothesis q.3: Adding two more competitors does not increase production more than adding a forward market, $q(M4) \le q(M2F)$.

We find no support for Hypothesis q.3:

- $q(M4) \le q(M2F)$ is NOT rejected in favor of q(M4) > q(M2F), p-value = 0.521.

Doubling the number of competitors does not increase production significantly more than introducing a forward market. This is in contrast with the theoretical predictions. Our data indicate the opposite ordering instead; q(M2F) is 4% higher than q(M4). This is surprising as Le Coq and Orzen (2006) found that the production of two competitors *with* forward market is strictly lower than that of four competitors *without* a forward market. Recall that in our treatments producers have steeply increasing production costs, while in their treatments producers have zero costs. Our result thus suggests that production costs make it harder for producers to collude. Indeed, in our treatments with two producers with production costs, M2 and M2F, subjects produced more than the Nash equilibrium, while in our treatment with two producers and zero costs, M2zc and M2Fzc, subjects produced fewer units than the Nash equilibrium. See the Appendix 2.2 for a detailed discussion of our results for M2zc and M2Fzc.


3.2. Efficiency

As mentioned above, we define efficiency, following Brandts et al. (2008), as the joint consumer and producer surplus realized in the experiment divided by the maximum joint consumer and producer surplus (the Walrasian

level of joint surplus). For the markets with a forward market, these measures are based on the outcomes in the forward and spot market together.

Table 7 shows the observed average efficiency level in the last 12 rounds, with the standard error in parenthesis. The row below gives the level of the observed average efficiency level relative to the Nash-equilibrium prediction in percentages. The efficiency levels are close to the Nash-equilibrium prediction; efficiency is significantly lower in M2 (p-value < 0.068) and higher in M2F (p-value = 0.083 in the low and 0.790 in the high Nash-equilibrium). This is mostly in line with earlier findings such as those in Brandts et al. (2008).

Figure 2 show the evolution of efficiency per period, averaged over groups. Efficiency quickly converges and after period 8 its level is equal or higher than 90% for all treatments except M2. The highest efficiency levels in the last twelve periods are realized by treatments with forward markets, M2F and M3F.³⁸Table 7 shows the observed average efficiency level in the last 12 rounds, with the standard error in parenthesis. The row below gives the level of the observed average efficiency level relative to the Nash-equilibrium prediction in percentages. The efficiency levels are close to the Nash-equilibrium prediction; efficiency is significantly lower in M2 (p-value < 0.068) and higher in M2F (p-value = 0.083 in the low and 0.790 in the high Nash-equilibrium). This is mostly in line with earlier findings such as those in Brandts et al. (2008).

Figure 2: Efficiency percentages

³⁸ See the Appendix for graphs of efficiency levels per period for the individual treatment together with the Nashequilibrium prediction.

	M2	M2F	M3	M3F	M4
Average efficiency as	92.0 (1.71)	95.5 (1.73)	95.6 (0.77)	98.7 (0.32)	96.1 (0.57)
% of Walras					
% of NE prediction	97.2%	97.5%/100.7% ³⁹	98.3%	100.5%	98.6%
Number of	N = 11	N = 11	N = 11	N = 11	N = 11
observations					
% of NE prediction -	92.5%, Le	93, 6%, Le Coq	94.2%,	96.7%,	95.4%,
earlier studies ⁴⁰	Coq and	and Orzen	Brandts et	Brandts et al.	Brandts et al.
	Orzen (2006)	(2006)	al. (2008)	(2008)	(2008)
					109.3%, Le
					Coq and
					Orzen (2006)

Table 7: Efficiency averages in the last 12 rounds

Table 7 presents the results of the F-tests.⁴¹ Aggregate production in the market is the most important determinant of efficiency, as production inefficiency has minor influence only. The results of the tests of hypotheses regarding efficiency thus closely follow those regarding aggregate production.

Table 8: Effects of one more competitor and forward market on efficiency, HΩ.1, HΩ.2 and HΩ.3

	OLS regression, with correction for clustering on group level, followed by an one-sided F-test on equality of the coefficients (Clustering on group)						
HΩ.1 - Markets	$\Omega(M3F) >$						
with 3 producers	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
			(p < 0.001)				
Number of	N = 792	N = 924	N = 924				
observations (independent groups)	(11) (11) (11)						

$H\Omega.2$ - Markets with 2 producers	$\Omega(M2F) > \Omega(M2)^*$ (p = 0.075)	Ω(M3) > Ω(M2)** (p = 0.026)	$\Omega(M3) > \Omega(M2F)$ (p = 0.708)
Number of observations (independent groups)	N = 528 (11)	N = 660 (11)	N = 660 (11)

³⁹ The first number gives the percentage of efficiency relative to the high production Nash-equilibrium, the second number relative to the low production Nash-equilibrium.

⁴⁰ Using a Wilcoxon signed-rank test to compare with the results reported by Brandts et al. (2008) shows that in our results efficiency is significantly higher (p-values = 0. 003 for M3, M3F and M4). Compared with Le Coq and Orzen (2006, efficiency is significantly higher in condition M2E (p. value = 0. 062 for the low Nash equilibrium and p. value = 0. 050 for

efficiency is significantly higher in condition M2F (p-value = 0. 062 for the low Nash-equilibrium and p-value = 0. 050 for the high Nash-equilibrium), significantly lower in condition M4 (p-value = 0. 003) and not significantly different in M2 (p-value = 0. 131).

⁴¹ The robustness tests, one-sided Wilcoxon rank-sum tests, confirmed our results at the same significance levels.

ΗΩ.3	$\Omega(M4) > \Omega(M2F)$
	(p = 0.351)
Number of	N = 792
observations	

Results testing Hypothesis Ω .1: In markets with 3 competitors, introducing a forward market increases efficiency, and the effect is stronger than adding one more competitor, Ω (M3F) > Ω (M4), and Ω (M3F) > Ω (M3).

We find partial support for Hypothesis $\Omega.1$:

- $\Omega(M3F) \le \Omega(M3)$ is REJECTED in favor of $\Omega(M3F) > \Omega(M3)$, p-value < 0.001.
- $\Omega(M4) \le \Omega(M3)$ is NOT rejected in favor of $\Omega(M4) > \Omega(M3)$, p-value = 0.293.
- $\Omega(M3F) \le \Omega(M4)$ is REJECTED in favor of $\Omega(M3F) > \Omega(M4)$, p-value < 0.001.

Introducing a forward market in a market with three producers increases efficiency with 3.1% and this is strongly significant Ω (M3F) > Ω (M3), p-value < 0.001). Adding one more competitor increases efficiency with a mere 0.5%, and this is not significant (NOT Ω (M4) > Ω (M3), p-value = 0.293). The increase in efficiency from introducing a forward market is larger than that from adding one more competitor, and that effect is strongly significant (Ω (M3F) > Ω (M4), p-value < 0.001).

Results testing Hypothesis $\Omega.2$: In markets with 2 competitors, both introducing a forward market and adding one more competitor increases efficiency, and the strength of the effects are of the same order, Ω (M2F) > Ω (M2), Ω (M2F) > Ω (M2), and NOT Ω (M3) > Ω (M2F).

We find partial support for Hypothesis Ω .2:

- $\Omega(M2F) \le \Omega(M2)$ is REJECTED in favor of $\Omega(M2F) > \Omega(M2)$, p-value = 0.075.
- $\Omega(M3) \le \Omega(M2)$ is REJECTED in favor of $\Omega(M3) > \Omega(M2)$, p-value = 0.026.
- $\Omega(M3) \le \Omega(M2F)$ is NOT rejected in favor of $\Omega(M3) > \Omega(M2F)$, p-value = 0.708.

Introducing a forward market increases efficiency with 3.5% and this is significant (Ω (M2F) > Ω (M3), p-value = 0.075). Adding one more competitor increases efficiency with 1.1% and this is also significant (Ω (M3) > Ω (M2), p-value = 0.026). The increase in efficiency due to adding one more competitor is not significantly larger than that due to the introduction of a forward market (NOT (Ω (M3) > Ω (M2F), p-value = 0.708).

Results testing Hypothesis Ω .3: Adding two more competitors does not increase efficiency more than introducing a forward market, Ω (M2F) $\leq \Omega$ (M4).

We find no support for Hypothesis $\Omega.3$:

- Ω (M4) $\leq \Omega$ (M2F) is NOT rejected in favor of Ω (M4) > Ω (M2F), p-value = 0.351.

The effect of introducing a forward market with two competitors does not increase efficiently significantly less than doubling the number of competitors.

3.3 Production Efficiency

As mentioned above, following Brandts et al. (2008) we define production efficiency as the actual producer surplus divided by the producer surplus had production taken place in the most efficient manner.⁴² We find that the effect of productive inefficiency is small and inconsequential. We therefore present here only the main results and give a more extensive treatment in Appendix A3:

- Results testing Hypothesis Φ.1: In markets with 3 competitors, introducing a forward market does not decrease productive efficiency, while adding one more competitor does (p-value = 0.093), Φ(M4) < Φ(M3) and Φ(M3F) ≥ Φ(M3).
- Results testing Hypothesis Φ .2: In markets with 2 competitors, introducing a forward market (p-value = 0.046) and adding one more competitor (p-value = 0.019) decrease productive efficiency, $\Phi(2F) < \Phi(M2)$, and $\Phi(3F) < \Phi(M3)$.

3.4 Rationality in forward markets

Using the assumption of rational behavior, Allaz and Vila (1993) argue that the forward price will be equal to the spot price, which implies that traders make zero profits. We indeed see this in our data for the treatments with a forward market: M2F and M3F. We estimated the relative markup of the spot market over the forward market price, defined by the difference between the two, divided by the average price: $P_{S-F} = (P_S - P_F)/((\frac{1}{2})(P_S + P_F)))$. The average (standard error) of P_{S-F} over the last 12 rounds is 0.001 (0.01), which is not significantly different than zero (p < 0.93). This indicates that traders are making an insignificantly small profit. Regressing P_{S-F} on the period shows a negative (albeit not significant) trend, thus indicating, in accordance with Plott and Uhl (1981) that the profit of traders diminishes with time. The total number of units producers offer on the forward market thus accurately predicts the total number of units they sell on the spot market, which indicates rational behavior.

3.5 Summary of results and comparison to earlier experiments

Our present study contributes to our understanding of the effects of forward markets and competition in electricity market settings. The following questions for future work suggest themselves: Is the effect of a forward market the same in a experiments with an indefinite time horizon? Demand uncertainty also introduces an insurance motive on the side of producers. Does the strategic effect of forward markets stay the same under demand uncertainty?

⁴² Given the quadratic marginal cost function this implies an as even as possible division of units over the producers.

Table 9 summarizes our theoretical and experimental results for the aggregate production, together with the key results of earlier experiments. We do not summarize the data on efficiency and productive inefficiency because the data on efficiency closely follow the patterns of the data on aggregate production, while the effect of productive inefficiency is small and inconsequential (see section 3.3).

		Theoretical predictions in	Results of earlier studies	Empirical results of
		our study		our study
Market with	One more	+ 7.5%	-	+ 12.1% **
2	competitor			
competitors	(OMC)			
_	Forward	$+5\%^{\#}$	+ 20.9% ***	+ 17.8% ***
	Market		(Le Coq & Orzen, 2006)	
	(FM)		_	
	Largest	OMC is 2.4% higher than	-	FM is 4.7% higher
	increase by	$FM^{\#}$		than OMC
				(not significant)

Table 9 Comparison of our results with those of earlier studies

Market with 3 competitors	One more competitor (OMC)	+ 2.3%	+ 19.6% *** (Brandts et al., 2008)	+ 4.4% (not significant)
	Forward Market (FM)	+ 4.7%	+ 9.5% ** (Brandts et al., 2008)	+ 12.0% ***
	Largest increase by	FM is 2.3% higher than One more competitor	OMC is 9.2% higher than FM** (Brandts et al., 2008)	FM is 7.3% higher than OMC***

——: Results contrast with earlier results

—: Results contradict earlier results

* : Assuming that in M2F high and low Nash-equilibrium are played with the same probability.

Our results show that in markets with three competitors, in line with our theoretical prediction and earlier experimental results (Brandts et al., 2008), introducing a forward market significantly increases aggregate production. Introducing a forward market increases aggregate production significantly more than adding one more competitor, which is in line with our theoretical prediction, but contradicts the findings of Brandts et al.(2008) (the contradictory findings are indicated by the dark background in

Table 9). In line with our theoretical prediction, adding one more competitor increases aggregate production. The increase is, however, not significant, which is in contrast with the findings of Brandts et al. (2008). While the lack of significance is likely caused by the relatively small number of independent observations, we note that Brandts et al. (2008) had even less. In markets with two competitors, in line with earlier experimental results (Le Coq and Orzen, 2006), introducing a forward market significantly increases aggregate production. We could not replicate the finding of Brandts et al. (2008) that this increase would be smaller than that of adding one more competitor. Our data suggest the opposite relationship.

Our present study contributes to our understanding of the effects of forward markets and competition in electricity market settings. The following questions for future work suggest themselves: Is the effect of a forward market the same in a experiments with an indefinite time horizon? Demand uncertainty also introduces an insurance motive on the side of producers. Does the strategic effect of forward markets stay the same under demand uncertainty?

4. Conclusion

We have tried to better understand the comparative advantages of behavioral and structural remedies meant to promote competitiveness in electricity markets. We investigate theoretically and experimentally the effects of the introduction of a forward market on competition in electricity markets. We compared this scenario with the best alternative, reducing concentration by adding one more competitor by divestiture. Our work contributes to the literature by introducing more realistic cost configurations of steeply increasing marginal costs, teasing apart competition effect and asset effect, and studying numbers of competitors that reflect better the market concentration in the European states.

Our experimental results suggest that the behavioral remedy of introducing a forward market in concentrated markets with two or three competitors is an effective remedy for increasing the aggregate supply. This is in line with the empirical studies of Wolak (2001) and Van Eijkel and Moraga-Gonzalez (2010), who found empirical evidence that forward trading increased the aggregate supply in the Australian electricity market and in the Dutch gas market, respectively. Our experimental results also suggest that the effect of the behavioral remedy of introducing a forward market is larger than that of the structural remedy of adding one more competitor by divestiture. This is a new result: earlier evidence suggests that behavioral remedies in general are less effective than structural remedies (Duso et al., 2011).

This is a policy relevant finding: competition authorities should, in line with the EU law rather focus on the behavioral remedy of introducing a forward market than on the structural remedy of lowering market concentration by divestiture.

At present, the EU has no single policy towards the design of forward markets for electricity. Such a policy might improve on the effectiveness of forward markets in the EU, as design is an important factor for the thickness of forward markets in EU countries (European Commission, 2007a, p.127). In Spain, for example, forward trading is de facto forbidden by design (European Commission, 2007a, p.127). In Greece forward trading has been made virtually impossible by design, as it has made trading in the pool mandatory (European Commission, 2007b, p.50). In contrast, in France the PowerNext exchange market allows for the trading of forward and future contracts of months, quarters, and years ahead. Our study indicates that the design, or evolution, of such public forward exchanges as in France (and many other developed markets) should indeed be encouraged. Moreover, the public observability of forward positions is essential for the competition-increasing effect of Allaz and Vila (1993) to arise (Hughes and Kao, 1997; Van Eijkel and Moraga-Gonzalez, 2010).

Observability of forward positions may not be optimal in markets with large volumes of Over-The-Counter trading. The EU could thus implement methods to increase the observability of the forward positions, by having for example the regulator publish aggregated and anonymized totals of forward positions.

Our results contradict the findings of Brandts et al. (2008) who found a stronger effect for the structural remedy of adding one more competitor than for the behavioral remedy of introducing a forward market. Their result stems most likely from their confounding of competition effect and asset effect. In Brandts et al. (2008) adding one more competitor not only increases competition, but also increases the aggregate asset base, which reduces the aggregate cost and thus gives an extra incentive to increase production. This asset effect is likely influential, as producers have steeply increasing costs. The welfare effects these authors report are not conclusive, however, as they do not incorporate the costs of the increase in the asset base (the cost of building extra production plants). In our study we control for the asset effect by adding one more competitor by divestiture. As a result the effect of the structural remedy of adding one more competitor is weaker and is now dominated by the effect of the behavioral remedy of introducing a forward market.

Acknowledgements

We thank Libor Dušek, Anna Gunnthorsdottir, Morita Hodaka, Axel Ockenfelds, Paul Pezanis-Christou, Christian Redl, participants at the ESA 2010 conference, and participants of seminars at CERGE-EI, the Australian School of Business, the Humboldt University, and the Max-Planck Institute for Economic Research in Jena, for their excellent comments. We are grateful for financial support from the REFGOV Integrated Project which was funded by the 6th European Research Framework Programme - CIT3-513420, research center grant No. LC542 of the Ministry of Education of the Czech Republic implemented at CERGE-EI, research grant P402/11/0364 from the Grant Agency of the Czech Republic (GACR) and the Loyola de Palacio Chair at the RSCAS of the European University Institute.

References

- Allaz, B. and Vila, J. -L. (1993). Cournot competition, forward markets and efficiency. Journal of Economic Theory, vol. 59(1), pp. 1–16.
- Binmore, K. (2007). Playing for real. A Text on Game Theory. Oxford: Oxford University Press.
- Borenstein, S. and Bushnell, J. (1999). An empirical analysis of the potential for market power in California's electricity market. Journal of Industrial Economics, vol. 47(3), pp. 285-323.
- Brandts, J., Pezanis-Christou, P. and Schram, A. (2008). Competition with forward contracts: a laboratory analysis motivated by electricity market design. The Economic Journal, 118 (January), pp. 192–214.
- Bushnell, J (2007). Oligopoly equilibria in electricity contract markets. Journal of Regulatory Economics, vol. 32(3), pp. 225-245.
- Devetag, G. and Ortmann, A. (2007). When and Why? A Critical Review of Coordination Failure in the Laboratory, Experimental Economics, vol. 10(3), pp. 331 344.
- Duso, T., Gugler, K. and Yurtoglu, B.B., (2011). How effective is European merger control? European Economic Review 55, pp. 980–1006.
- European Commission, (2006a). Council Regulation (EC) No 1/2003 of 16 December 2002 on the implementation of the rules on competition laid down in Articles 81 and 82 of the Treaty, Brussels: European Commission, OJ 2003R0001— EN— 18.10.2006.
- European Commission, (2006b). Roundtable on remedies and sanctions in abuse of dominance cases, Brussels: European Commission, DAF/COMP/WD(2006)34.
- European Commission (2007a). DG Competition report on energy sector inquiry.
- European Commission (2007b). Prospects for the internal gas and electricity market.
- European Commission (2008). Update of the nuclear illustrative programme in the context of the second strategic energy review.
- Fischbacher, U. (2007). Z-Tree: Zurich Toolbox for Ready-made Economic Experiments, Experimental Economics, vol. 10(2), pp. 171-178.

- Ferreira, J. L., Kujal, P. and Rassenti, S. (2009). The strategic motive to sell forward: experimental evidence. Economics Working Papers we092616, Universidad Carlos III, Departamento de Economía.
- Ferreira, J. L., Kujal, P. and Rassenti, S. (2010). Multiple openings of forward markets: experimental evidence. Economics Working Papers we1023, Universidad Carlos III, Departamento de Economía.
- Green, R. (1996). Increasing competition in the British electricity spot market, The Journal of Industrial economics, vol. 44(2), pp. 205-216.
- Green, R. (2004). Did English generators play Cournot? Capacity withholding in the electricity pool. Working Papers 0410, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
- Green, R. (2006). Market power mitigation in the UK power market, Utilities Policy 14, pp. 76-89.
- Hertwig, R. and Ortmann, A. (2001). Experimental practices in economics: A methodological challenge for psychologists? Behavioral and Brain Sciences 24, pp. 383–451.
- Huck, S., Normann, H. -T. and Oechssler, J. (2004). Two are few and four are many: number effects in experimental oligopoly, Journal of Economic Behavior and Organization, vol. 53(4), pp. 435–46.
- Hughes, J. S. and Kao, J. L. (1997). Strategic forward contracting and observability, International Journal of Industrial Organization 16, pp. 121-133.
- Klemperer, P. D. and Meyer, M. A. (1989). Supply Function Equilibria in Oligopoly under Uncertainty, Econometrica, vol. 57(6), pp. 1243-1277.
- Le Coq, C. and Orzen, H. (2006). Do forward markets enhance competition? Experimental evidence, Journal of Economic Behavior and Organization, vol. 61(3), pp. 415–31.
- Ledyard, O. (2005). Public goods: a survey of experimental research. In: Kagel, J. H. & Roth, A. E. Editors, The Handbook of Experimental Economics, Princeton University Press, Princeton (1995), pp. 111–194.
- Lévêque, F. (2006). Antitrust enforcement in the electricity and gas industries: problems and solutions for the EU. The Electricity Journal, vol. 19(5), pp. 27-34.
- Liski, M. and Montero, J. P. (2006). Forward trading and collusion in oligopoly. Journal of Economic Theory, 131, pp. 212-230.
- Mahenc, P. and Salanié, F. (2005). Softening competition through forward trading, Journal of Economic Theory 116, pp. 282–293.
- Matthes, F. C, Grashof, K. and Gores, S. (2007). Power generation market concentration in Europe 1996-2005. An empirical analysis. Öko-Institute. Available at www.oeko.de.
- Newbery, D. (2002). Predicting market power in wholesale electricity markets, EUI-RSCAS Working Papers 3, European University Institute, Robert Schuman Centre of Advanced Studies.
- Newbery, D. (2002). Problems of liberalising the electricity industry, European Economic Review, vol. 46(4–5), pp. 919–27.
- Plott, C. R. and Uhl, J. T. (1981). Competitive Equilibrium with Middlemen: An Empirical Study, Southern Economic Journal, vol. 47(4), pp. 1063-1071.

- Selten, R., (1973). A simple model of imperfect competition, where four are few and six are many. International Journal of Game Theory, 2, pp. 141–201.
- Selten, R., (1978). The chain store paradox, Theory and Decision, 9, pp. 127-159.
- Selten, R., (1991). Evolution, learning, and economic behavior, Games and Economic Behavior, 3, pp. 3-24.
- Van Eijkel, R. and Moraga-Gonzalez, J.L. (2010). Do firms sell forward for strategic reasons? An application to the wholesale market for natural gas. IESE Business School Working Paper No. 864.
- Van Koten, S. and Ortmann, A. (2008). The unbundling regime for electricity utilities in the EU: A caseof legislative and regulatory capture?, Energy Economics, vol. 30(6), pp. 3128–3140.
- Willems, B. (2002). Modeling Cournot competition in an electricity market with transmission constraints. The Energy Journal, vol. 23(3).
- Willems, B. (2006). Virtual divestitures, will they make a difference. Available at www.bertwillems.com.
- Willems, B., Rumiantseva, I. and Weigt, H. (2009). Cournot versus supply functions: what does the data tell us? Energy Economics, vol. 31(1), pp. 38-47.
- Wolak, F. A. (2001). An empirical analysis of the impact of hedge contracts on bidding behavior in a competitive electricity market. International Economic Journal, vol. 14, pp. 1-39.
- Wolak, F. A. and Patrick, R. H. (2001). The impact of market rules and market structure on the price determination process in the England and Wales electricity market. NBER Working Papers 8248, National Bureau of Economic Research.

Appendix A: Production costs

Table A1: Overview	of aggregate cost of	producing (rounded numbers)

Market with two producers (original market)			Market with three producers (after first divestment)			Market with four producers (after second divestment)									
Ea	ch Proc	lucer	Aggi	regate		n Proc		Aggre		Ea	ch Proc	lucer	Aggr	ggregate	
Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs	Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs	Units produced by each producer	Marginal Costs	Total Costs	Total Production	Total Costs	
Ν	MC	TC	2*N	2* TC	N	MC	TC	3*N	3*TC	N	MC	TC	4* N	4*TC	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
1	1	1	2	2	1	2	2	3	6						
2	5	6	4	12						1	3	3	4	12	
3	9	15	6	30	2	8	10	6	30						
4	16	31	8	62						2	12	15	8	60	
5	24	55	10	110	3	18	28	9	84						
6	35	90	12	180	4	32	60	12	180	3	30	45	12	180	
7	45	135	14	270	5	50	110	15	330			100		100	
8	60	195	16	390	6	70	100	10	= 40	4	55	100	16	400	
9	80 90	275	18	550	6	70	180	18	540	-	05	105	20	7 40	
10	115	365 480	20 22	730 960	7	100	280	21	840	5	85	185	20	740	
11 12	113	610	22	1220	8	130	410	21	1230	6	120	305	24	1220	
12	160	770	24	1540	9	150	410	24	1230	0	120	305	24	1220	
13	180	950	28	1940		160	570	27	1710	7	170	475	28	1900	
15	210	1160	30	2320	10	200	770	30	2310	,	170	-15	20	1700	
16	230	1390	30	2320	10	200	110	50	2010	8	220	695	32	2780	
17	260	1650	34	3300	11	240	1010	33	3030			070	02	2700	
18	300	1950	36	3900	12	290	1300	36	3900	9	280	975	36	3900	
19	330	2280	38	4560	13	340	1640	39	4920						
20	360	2640	40	5280						10	345	1320	40	5280	
21	410	3050	42	6100	14	390	2030	42	6090						
22	430	3480	44	6960						11	420	1740	44	6960	
23	490	3970	46	7940	15	450	2480	45	7440						
24	520	4490	48	8980	16	510	2990	48	8970	12	500	2240	48	8960	
25	560	5050	50	10100	17	580	3570	51	10710						
26	620	5670	52	11340						13	590	2830	52	11320	
27	660	6330	54	12660	18	650	4220	54	12660	┡──┤					
28	710	7040	56	14080			10.11		1.107	14	690	3520	56	14080	
29	760	7800	58	15600	19	720	4940		14820			/		4	
30	810	8610	60	17220	20	800	5740		17220		790	4310	60	17240	
31	870	9480	62	18960	21	880	6620	63	19860		000	5200	C 4	30000	
32	920	10400	64	20800	22	070	7500		22770	16	890	5200	64	20800	
33	1000	11400	66 68	22800 24000	22	970	7590	66	22770	17	1010	6210	20	24040	
34 35	1050 1100	12450	68 70	24900	23	1060	8650	60	25950	-	1010	6210	68	24840	
35 36	1150	13550 14700	70	27100 29400	23 24	1060 1150	8650 9800	69 72	25950 29400		1140	7350	72	29400	
30 37	1230	14700	72	31860	24	1250	9800				1140	/550	12	29400	
37 38	1230	17250	74	34500	23	1230	11030	13	55150	19	1270	8620	76	34480	
38	1520	17250	/6	34500						19	1270	8620	/6	34480	

39	1350	18600	78	37200	26	1350	12400	78	37200					
40	1450	20050	80	40100						20	1380	10000	80	40000
41	1500	21550	82	43100	27	1450	13850	81	41550				-	
42	1600	23150	84	46300	28	1600	15450	84	46350	21	1550	11550	84	46200
43	1650	24800	86	49600	29	1650	17100	87	51300					
44	1750	26550	88	53100						22	1700	13250	88	53000
45	1800	28350	90	56700	30	1800	18900	90	56700					
46	1900	30250	92	60500						23	1900	15150	92	60600
47	2000	32250	94	64500	31	1950	20850	93	62550					
48	2050	34300	96	68600	32	2050	22900	96	68700	24	2000	17150	96	68600

Appendix B: Robustness tests

B.1 Alternate statistical tests

Taking a cue from Le Coq and Orzen (2006), we ran one-sided Wilcoxon rank-sum tests as robustness tests for our hypotheses on quantity, efficiency and productive efficiency. Table A2 shows the result of the robustness tests on quantity. Overall they confirm our findings in the main test with two exceptions. The relationship q(M4)> q(M3) is not significant anymore (p-value = 0.154) but barely so. The relationship q(M2F) > q(M3) has a lower p-value and thus is significant (p-value = 0.086).

Table A2: Test results quantity hypotheses

	One-sided two-sample Wilcoxon rank-sum (Mann-Whitney) test					
Hq.1 - Markets with 3	q(M3F) >	q(M4) > q(M3)	q(M3F) >			
producers	q(M3)*** (p < 0.001)	(p = 0.154)	q(M4)***			
			(p = 0.010)			
	N = 22	N = 22	N = 22			

Hq.2 - Markets with 2 producers	q(M2F) > q(M2)** (p = 0.01275)	q(M3) > q(M2)** (p = 0.012)	q(M2F) > q(M3)* (p = 0.070)
Number of observations	N = 22	N = 22	N = 22

Hq.3	q(M4) > q(M2F)
	(p = 0.794)
	N = 22

Table A3 shows the result of the robustness tests on efficiency. Overall they confirm our findings in the main test; all relationships have the same levels of significance (0.1, 0.05, or 0.01) as in the main test.

	One-sided two-sample Wilcoxon rank-sum (Mann-Whitney) test						
H Ω .1 - Markets with	$\Omega(M3F) >$	$\Omega(M4) > \Omega(M3)$	$\Omega(M3F) >$				
3 producers	$\Omega(M3)^{***}$ (p = 0.002)	(p = 0.311)	Ω(M4)***				
			(p < 0.001)				
Number of observations	N = 22	N = 22	N = 22				

Table A3: Test results for H Ω .1, H Ω .2 and H Ω .3

HΩ.2 - Markets with 2 producers	$\Omega(M2F) > \Omega(M2)^*$ (p = 0.079)	Ω(M3) > Ω(M2)** (p = 0.039)	Ω(M2F) > Ω(M3) (p = 0.7251)
Number of observations	N = 22	N = 22	N = 22

ΗΩ.3	$\Omega(M4) > \Omega(M2F)$
	(p = 0.603)
Number of	N = 22
observations	

Table A4 shows the result of the robustness tests on production efficiency. Overall they confirm our findings in the main test with one exception: The relationship $\Phi(M4) < \Phi(M3)^*$ has a slightly higher p-value and thus is no longer significant (p-value = 0.100) but barely so.

Table A4: Test results for H Φ .1 and H Φ .2

	One-sided two-sample (Mann-Whitney) test	Wilcoxon rank-sum
$H\Phi.1 - Markets$ with	$\Phi(M4) < \Phi(M3)$	$\Phi(M3F) < \Phi(M3)$
3 producers	(p = 0.100)	(p = 0.859)
Number of	N = 22	N = 22
observations		

HΦ.2– Markets with 2 producers	Φ(M3) < Φ(M2)** (p = 0.041)	Φ(M2F) < Φ(M2)* (p = 0.079)
Number of observations	N = 22	N = 22

Notably, the robustness tests confirm the results we found in the main tests, and suggest that introducing a forward market may have also a stronger effect on competition than adding one more competitor in markets with two competitors.

B.2 Comparability of data from sessions with two producers with(out) costs

We ran treatments for markets with two producers without costs to allow comparisons with an earlier experiment on the effect of forward markets by Le Coq and Orzen (2006). Table B1 shows the theoretical predictions for these cases.

	NE	NE	Walras-zc	JPM-zc
	M2-zc	M2F-zc	(n = 2)	(n = 2)
$q^{\scriptscriptstyle f}_{\scriptscriptstyle ti}$	-	16	_	_
$q_{\scriptscriptstyle ti}$	25	30	37	18/ 19 ⁴³
q_t	50	60	74	37
p_t	650	380	2	1001
Prod.S.	32500	22800	148	37037
Cons.S.	33075	47790	72927	17982
Total S.	65575	70590	73075	55019
<i>Eff.(%)</i>	89.74	96.60	100	75.29

Table B1: Theoretical predictions zero-cost markets

Explanation of row terms: NE stands for the Nash-equilibrium, Walras for the Walrasian (welfare optimizing) equilibrium, and JPM for joint profit maximization (collusion).

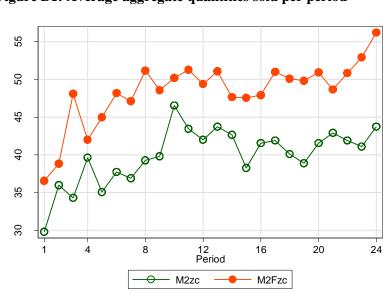

Explanation of column terms: q_{ti}^{f} stands for the forward production of each producer, q_{ti} for the total production of forward (if it is present) and spot market for each producer, q_{t} for the total *aggregate* production of forward (if it is present) and spot market for all producers together, p_{t} for the price, *Prod.S* for producer surplus, *Cons.S* for consumer surplus, *Total.S* for total surplus, *Eff.*(%) for efficiency in percentage.

Figure B1 shows the evolution of total (aggregate) quantities sold per period, averaged over groups. The treatments without forward markets are represented by open circles, the treatments with forward markets by filled circles. As in all other treatments, the aggregate productions starts out rather low, 44 and then quickly jump up in the direction of the Nash-equilibrium. Between round 10 and 12 behavior has stabilized.

⁴³ One generator produces 18 units, the other 19 units.

⁴⁴ We believe this might be an anchoring effect induced by the instructions, which presented examples with low (and hence simple) numbers so as not to unduly complicate the understanding of the basic relationships.

34/101

Figure B1: Average aggregate quantities sold per period

Averages by group

Table B2 shows that aggregate production tends to be significantly (p-value < 0.093) smaller than the Nashequilibrium, confirming results of Le Coq and Orzen (2006).

Averages			
	M2zc	M2Fzc	
Average production	41.6	50.3 9	
	(1.91)	(2.51)	
% of NE prediction	79.9%	83.8%	
Number of observations	N = 11	N = 11	
% of NE prediction	93, 2%,	93, 8%,	
Le Coq and Orzen (2006)			

Table B2: Production Averages and comparison

Table B3 shows that, using a one-sided Wilcoxon rank-sum test, the increase in aggregate production due to a forward market is significant (p-value = 0.014), confirming results of Le Coq and Orzen (2006).

Main	n tests
one-sided Wilcoxon rank-sum test	M2Fzc >
	M2zc** (p =
	0.014)
Number of observations	N = 11

Robustne	ss tests
OLS regression with correction for	M2Fzc >
clustering on group level, followed by	M2zc***
one-sided F test on equality of the	(p < 0.010)
coefficients	
Number of observations	N = 572
(independent groups)	(11)

Figure B2 shows the evolution of efficiency per period, averaged over groups. The treatments without forward markets are represented by open circles, the treatments with forward markets by filled circles. As producers have no production costs, production efficiency as defined in the main text is always 100%. Efficiency is thus determined by the aggregate production and the average efficiency in Figure A2 thus closely follows the aggregate average production (Figure B1). Efficiency is lower than the Nash-equilibrium prediction. Table B4 shows, using a two-sided Wilcoxon one-sample signed-rank tests, that these differences are significant (both p-values < 0.017).

Figure B2: Average efficiency per period

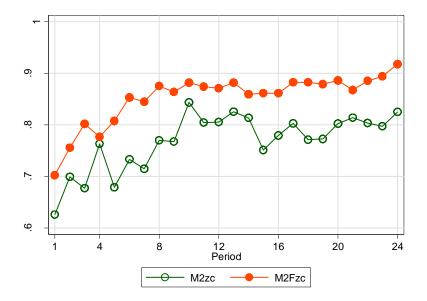
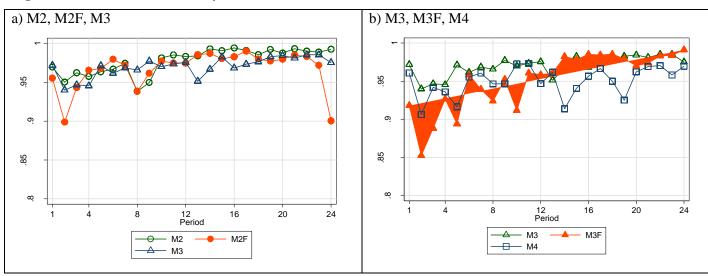


Table B4: Efficiency averages and comparison


	M2zc	M2Fzc
Average efficiency as % of Walras	79.7	88.3
	(2.10)	(2.37)
% of NE prediction	89.8%	90.7%
Number of observations	N = 11	N = 11

one-sided Wilcoxon rank-sum test	M2Fzc >
	M2zc***
	(p < 0.010)
Number of observations	N = 16
OLS regression with correction for	M2Fzc > M2zc**
clustering on group level, followed by	(p = 0.011)
one-sided F test on equality of the	
coefficients	
Number of observations	N = 572
(independent groups)	(11)

Appendix C: Production Efficiency

As mentioned above, we define production efficiency, following Brandts et al. (2008), as the actual producer surplus divided by the producer surplus had production taken place in the most efficient manner.⁴⁵ Figure c1 shows the evolution of efficiency per period, averaged over groups. Efficiency quickly converges and after period 8 its level is mostly equal or higher than 90% for all treatments.

The treatments with two traders are represented by circles, with three traders by triangles, and with four traders by squares. The treatments without forward markets are represented by open rounds, triangles or squares, the treatments with forward markets by filled rounds or triangles. M3 is clearly lower than M2, and M2F is most of the time in the middle. M4 is clearly lower than M3 and M3F, while there is no visible difference between M3 and M3F.

Figure C1: Production Efficiency

Table C1 shows the overall average of production efficiency in the last 12 rounds, with the standard error in parenthesis. The row below gives the size of the observed aggregated quantity relative to the Nash-equilibrium prediction in percentages.

⁴⁵ Given the quadratic marginal cost function this implies an as even as possible division of units over the producers.

	M2	M2F	M3	M3F	M4
Average Production	99.0	97.5	97.6	98.0	95.4
Efficiency	(0.35)	(0.81)	(0.59)	(0.69)	(1.63)
Number of observations	N = 11				

 Table C1: Production efficiency averages in the last 12 rounds

	•	, with correction for clustering followed by a one-sided F test group)
$H\Phi.1 - Markets$ with 3	Φ(M4) <	$\Phi(M3F) < \Phi(M3)$
producers	Φ(M3)*	(p = 0.666)
-	(p = 0.093)	
Number of observations	N = 1001	N = 858
(independent groups)	(11)	(11)
$H\Phi.2-$ Markets with 2	Φ(M3) <	$\Phi(M2F) < \Phi(M2)^{**}$
producers	Φ(M2)**	(p = 0.046)
	(p = 0.019)	
Number of observations	N = 715	N = 572

Table C2 presents the results of the F-tests based on OLS regressions.⁴⁶

(11)

Results testing Hypothesis Φ .1: In markets with 3 competitors, introducing a forward market does not decrease productive efficiency, while adding one more competitor does, $\Phi(M4) < \Phi(M3)$ and $\Phi(M3F) \ge \Phi(M3)$.

(11)

We find support for Hypothesis Φ .1:

(independent groups)

- $\Phi(M4) \ge \Phi(M3)$ is REJECTED in favor of $\Phi(M4) < \Phi(M3)$, p-value = 0.093.
- $\Phi(M3F) \ge \Phi(M3)$ is NOT rejected in favor of $\Phi(M3F) < \Phi(M3)$, p-value = 0.666.

Adding one more competitor to M3 decreases the production efficiency with 2.4%, and this decrease is significant ($\Phi(M4) < \Phi(M3)$, p-value = 0.093). Introducing a forward market does not lower production efficiency; the data rather suggest the opposite as efficiency is higher in the market with a forward market than in the market without one (though not significantly so).

Results testing Hypothesis Φ .2: In markets with 2 competitors, introducing a forward market and adding one more competitor decrease productive efficiency, $\Phi(2F) < \Phi(M2)$, and $\Phi(3F) < \Phi(M3)$

We find support for Hypothesis Φ .2:

- $\Phi(M3) \ge \Phi(M2)$ is REJECTED in favor of $\Phi(M3) < \Phi(M2)$, p-value = 0.019.

 $^{^{46}}$ Robustness tests confirm our results, but show a weaker significance (p-value = 0. 100) for $\Phi(M4) < \Phi(M3)$.

- $\Phi(M2F) \ge \Phi(M2)$ is REJECTED in favor of $\Phi(M2F) < \Phi(M2)$, p-value = 0.046.

Adding one more competitor to M2 decreases production efficiency with 1.4%. Introducing a forward market to a market decreases production efficiency with 1.5%. Both decreases are significant.

Appendix D: Sessions with experienced subjects

In October 2010 we ran sessions with subjects that had taken part in earlier sessions of the experiment. For each treatment we have 5 independent groups, except for M3F and M4, where we have 4 independent groups. For all treatments except M2 we assigned subjects to the exact same treatment they had participated in earlier. In the M2 treatments we had to rely on some subjects that had earlier participated in M3 or M4. Figure D1 shows the aggregate production for inexperienced subjects on the left and for experienced on the right. As can be seen, the basic pattern is the same. The eyeball test reveals that the largest differences are in the first periods – experienced subjects produce visibly more.

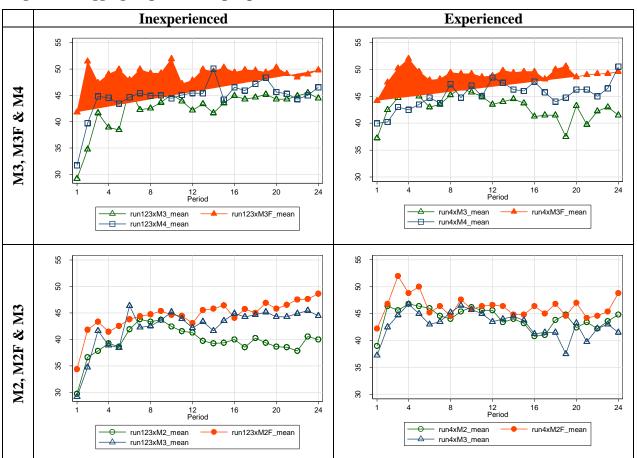


Figure D1: Aggregate production per period

We noted above that subjects start out producing rather low (below the average over all rounds) and that we believe that this is an instruction's effect. In the instructions we gave examples with low number to facilitate

understanding. We believe this triggered our subjects to produce low amounts in the first few rounds. Experienced subjects seem less susceptible to this instructional framing effect. Figure D2 shows how much experienced subjects produced more than inexperienced ones on average over all treatments. Experienced subjects produce 20% more in the first round. After that the difference levels off to 10% and from round 6 on the difference hovers close to zero.

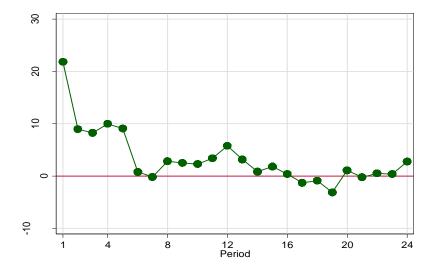


Figure D2: Percentage increase of aggregate production by experienced subjects

To test if the aggregate production of experienced subjects is different from that of inexperienced subjects, we run a regression of the aggregate production on the treatment dummies interacted with the experience dummy for the last 12 periods:

$$AggSupply = \begin{cases} InExp \cdot \left(\beta_{IE,M2} \cdot M2 + \beta_{IE,M2F} \cdot M2F + \beta_{IE,M3} \cdot M3 + \beta_{IE,M3F} \cdot M3F + \beta_{IE,M4} \cdot M4\right) + \\ Exp \cdot \left(\beta_{E,M2} \cdot M2 + \beta_{E,M2F} \cdot M2F + \beta_{E,M3} \cdot M3 + \beta_{E3F} \cdot M3F + \beta_{E,M4} \cdot M4\right) + \varepsilon \end{cases}$$

In Exp (Exp) is the dummy for the inexperienced (experienced) subjects, and M2, M2F, M3, M3F, and M4 are the dummies for the treatments. I then run 2-sided F-tests for the differences between $\beta_{IE,i}$ (inexperienced subjects) and $\beta_{E,i}$ (experienced subjects) for all treatments. Table D1 reports the results.

	M2	M2F	M3	M3F	M4
InExperienced	39.34	46.31	44.24	49.55	46.20
	(1.46)	(1.976)	(1.18)	(0.58)	(0.95)
Experienced	43.12	45.73	41.98	50.94	46.38
	(1.53)	(2.40)	(1.57)	(0.16)	(0.93)
Difference	+3.78	-0.58	-2.26	+1.39	+0.18
Significance	0.0781	0.8533	0.2527	0.025	0.8937

 Table D1: Comparison of experienced and inexperienced subjects

Differences are significant for treatments M2 and M3F. In both these treatments experienced subjects produced *more* than inexperienced subjects. Another indication that experience leads to more productions comes from regressing the aggregate production on the treatment dummies and a time variable to records how many months it is ago that the subject participated in the experiment. We conjecture that the more recently a subject has participated, the more strongly their experience is still present, and thus the more strongly might be the effect of experience on the subject's decisions. The time variable is indeed negative and significant (p < 0.035): subjects that participated 6 months ago produce on average 2.2 units more than subjects that participated 12 months ago.

Experience increasing aggregate production is in line with the experimental evidence for public provision games. This evidence indicates that private contributions to a public good fall with experience (Ledyard, 1995). The private contribution that producers could make in Cournot competition is to exercise restraint in selling units on the forward and spot markets. Such a restraint softens competition in the spot market which results in a higher overall profit. Experienced producers thus make lower "public contributions" by not restraining themselves.

(NOT FOR PUBLICATION)

Appendix E: Predictions of the spot market price by our automated traders

M2F-zc: Total Production Stage A, Predicted T	Fotal Production and Resulting (Spot) Price
---	--

Total Production Stage A	Predicted (NE) Aggregate Production	Predicted (NE) price	Total Production Stage A	Predicted (NE) Aggregat e Productio n	Predicte d (NE) price	Total Production Stage A	Predicted (NE) Aggregate Productio n	(NE)
0	49.4	667	33	71.4	73	66	93.4	0
1	50.0	649	34	72.0	55	67	94.0	0
2	50.7	631	35	72.7	37	68	94.7	0
3	51.4	613	36	73.4	19	69	95.4	0
4	52.0	595	37	74.0	1	70	96.0	0
5	52.7	577	38	74.7	0	71	96.7	0
6	53.4	559	39	75.4	0	72	97.4	0
7	54.0	541	40	76.0	0	73	98.0	0
8	54.7	523	41	76.7	0	74	98.7	0
9	55.4	505	42	77.4	0	75	99.4	0
10	56.0	487	43	78.0	0	76	100.0	0
11	56.7	469	44	78.7	0	77	100.7	0
12	57.4	451	45	79.4	0	78	101.4	0
13	58.0	433	46	80.0	0	79	102.0	0
14	58.7	415	47	80.7	0	80	102.7	0
15	59.4		48	81.4	0	81	103.4	0
16	60.0	379	49	82.0	0	82	104.0	0
17	60.7	361	50	82.7	0	83	104.7	0
18	61.4		51	83.4	0	84	105.4	0
19	62.0	325	52	84.0	0	85	106.0	0
20	62.7	307	53	84.7	0	86	106.7	0
21	63.4	289	54	85.4	0	87	107.4	0
22	64.0	271	55	86.0	0	88	108.0	0
23	64.7	253	56	86.7	0	89	108.7	0
24	65.4		57	87.4		90	109.4	
25	66.0		58	88.0		91	110.0	
26	66.7	199	59	88.7		92	110.7	
27	67.4		60	89.4	0	93	111.4	0
28	68.0	163	61	90.0	0	94	112.0	0
29	68.7		62	90.7		95	112.7	
30	69.4		63	91.4		96	113.4	0
31	70.0		64	92.0	0			
32	70.7	91	65	92.7	0			

M2F: Total Production Stage A, Predicted Total Production and Resulting (Spot) Price

Total Production Stage A	Predicted (NE) Aggregate Production	(NE) price	Total Productio Stage A	n Predicted (NE) Aggregat e Productio	d (NE) price	Total Production Stage A		Predicted (NE) price
				n				
0	40.0	921	3.	3 47.3	723	66	66.0	218
1	40.2	915	34	47.5	717	67	67.0	191
2	40.4	909	3	5 47.7	711	68	68.0	164
3	40.6	903	3(5 48.0	705	69	69.0	137
4	40.9	897	3'	48.2	699	70	70.0	110
5	41.1	890	38	8 48.4	693	71	71.0	83
6	41.3	884	3		688	72	72.0	56
7	41.6	878	40		682	73	73.0	29
8	41.8	872	4		676	74	74.0	2
9	42.0	866	42		670	75	75.0	0
10	42.2	860	4.		664	76	76.0	0
11	42.5	854	44		659	77	77.0	0
12	42.7	848	4		653	78	78.0	0
13	42.9	842	40		647	79	79.0	0
14	43.1	836	4'		641	80	80.0	0
15	43.3	830	48		636	81	81.0	0
16	43.6	824	49		630	82	82.0	0
17	43.8	818	50		624	83	83.0	0
18	44.0	812	5		619	84	84.0	0
19	44.2	806	52		596	85	85.0	0
20	44.5	800	5.		569	86	86.0	0
21	44.7	794	54		542	87	87.0	0
22	44.9	788	5		515	88	88.0	0
23	45.1	782	5		488	89	89.0	0
24	45.3	776	5'		461	90	90.0	0
25	45.6	770	5		434	91	91.0	0
26	45.8	764	5		407	92	92.0	0
27	46.0	758	6		380	93	93.0	0
28	46.2	752	6		353	94	94.0	0
29	46.4	746	62		326	95	95.0	0
30	46.7	740	6.		299	96	96.0	0
31	46.9	734	64		272			
32	47.1	728	6	5 65.0	245			

M3F: Total Production Stage A, Predicted Total Production and Resulting (Spot) Price

Total	Predicted	Predicted	Total	Predicted	Predicte	Total	Predicted	Predicted
Production	(NE)	(NE)	Production		d (NE)	Production		(NE)
Stage A	Aggregate	price	Stage A	Aggregate	price		Aggregate	price
	Production			Productio			Productio	
				n			n	
0	43.2	833	33	48.4	693	66	66.0	218
1	43.4	829	34	48.6	688	67	67.0	191
2	43.5	824	35	48.7	684	68	68.0	164
3	43.7	820	36	48.9	680	69	69.0	137
4	43.9	816	37	49.0	676	70	70.0	110
5	44.0	811	38	49.2	672	71	71.0	83
6	44.2	807	39	49.3	668	72	72.0	56
7	44.3	803	40	49.5	663	73	73.0	29
8	44.5	799	41	49.7	659	74	74.0	2
9	44.7	794	42	49.8	655	75	75.0	0
10	44.8	790	43	50.0	651	76	76.0	0
11	45.0	786	44	50.1	647	77	77.0	0
12	45.1	781	45	50.3	643	78	78.0	0
13	45.3	777	46	50.4	639	79	79.0	0
14	45.5	773	47	50.6	635	80	80.0	0
15	45.6	769	48	50.7	630	81	81.0	0
16	45.8	764	49	50.9	626	82	82.0	0
17	45.9	760	50	51.0	622	83	83.0	0
18	46.1	756	51	51.2	618	84	84.0	0
19	46.2	752	52	52.0	596	85	85.0	0
20	46.4	747	53	53.0	569	86	86.0	0
21	46.6	743	54	54.0	542	87	87.0	0
22	46.7	739	55	55.0	515	88	88.0	0
23	46.9	735	56	56.0	488	89	89.0	0
24	47.0	730	57	57.0	461	90	90.0	0
25	47.2	726	58	58.0	434	91	91.0	0
26	47.3	722	59	59.0	407	92	92.0	0
27	47.5	718	60	60.0	380	93	93.0	0
28	47.6	713	61	61.0	353	94	94.0	0
29	47.8	709	62	62.0	326	95	95.0	0
30	48.0	705	63	63.0	299	96	96.0	0
31	48.1	701	64	64.0	272			
32	48.3	697	65	65.0	245			

(NOT FOR PUBLICATION)

Appendix F: Consolidated instructions

The following "consolidated" instructions integrate the instructions of all treatments in "Structural versus Behavioral Remedies in the Deregulation of Electricity Markets: An Experimental Investigation Guided by Theory and Policy Concerns". The treatments are explained in detail in the manuscript and are here referred to in shorthand as:

- M2, M3, M4 denoting simple producer markets (without traders), with convex cost functions,
- M2-zc denoting a simple producer market (without traders), with zero cost function,
- M2F, M3F denoting markets featuring producers and traders, with convex cost functions,
- M2F-zc denoting a market featuring producers and traders, with zero cost function.

In the following "consolidated" instructions:

- standard font is the baseline text common to all treatments,
- bold standard font is also baseline text common to all treatments; it is simply highlighted,
- *Italics* identify text that is specific to a subset of the treatments; all text in italics is furthermore in [] because, separated by semicolon it is always specified for which subset of treatments the text in italics is relevant.
- Text between <> gives an action that the instructor should do.

Welcome to the experiment! Please turn off your mobile phones.

1. INTRODUCTION

You are about to participate in an economics experiment. The instructions are simple. If you follow them carefully, you can earn a substantial amount of money. Your earnings will be paid to you in cash at the end of the experiment. <show the money>

The currency in this experiment is called "Experimental Currency Units", or "ECU"s. At the end of the experiment, we will exchange ECUs for Czech Crowns. The exchange rate has been set in such a way that, on <u>average</u> earnings coincide with the predicted <u>average</u> earnings. (i.e., ca Czk 600-700 for a session of two hours). Your specific earnings will depend on your choices and the choices of the participants you will be paired with.

This experiment will take approximately ["100 ~ 120"; M2F, M2F-zc, M3F] ["80 ~ 90"; M2, M2-zc, M3, M4] minutes. There are 25 paid rounds in this experiment.

A.1. General rules

If you have a question, raise your hand and one of the experimenters will come to your desk to answer it.

You are not allowed to communicate with other participants during the experiment. If you violate this rule, you will be asked to leave the experiment and will not be paid (not even your show-up fee).

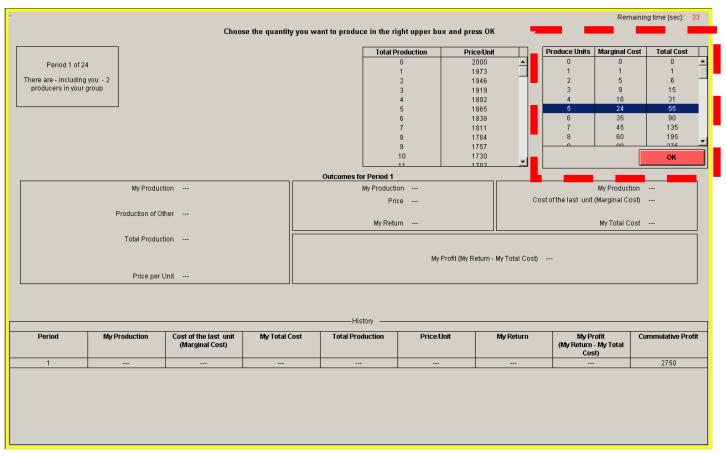
["In the experiment it is possible to go bankrupt. In this case you have the option to invest your show-up fee. If you go bankrupt, and you do not want to invest your show-up fee, you will be asked to leave the experiment. In that case, you will be paid just your show-up fee. However, there are strategies that, if you use them, guarantee that you will not go bankrupt."; M2, M2F, M3, M3F, M4]

You will be a member of a group. Including you, there will be ["TWO"; M2, M2-zc, M2F, M2F-zc] ["THREE"; M3, M3F] ["FOUR"; M4] participants in your group. Group membership is assigned randomly at the start of the experiment. Group membership is anonymous; you will not know who is in the group with you and ["the other person in your group will not"; M2, M2-zc, M2F, M2F-zc] ["none of your group members will"; M3, M3F, M4] know that you are in his or her group. You will not interact with members of other groups. Your group membership stays fixed for the experiment.

A group defines the Producers in a market; as Producer you will produce a fictitious product and sell it on the market. At the beginning of the experiment, you receive a start capital of 2.750 ECU.

A.2. Description

["Each of the 30 periods consists of two successive stages. The first of these is called Stage A and the second is called Stage B. We will first describe Stage A, then Stage B.


A.2.1. Stage A "; M2F, M2F-zc, M3F]

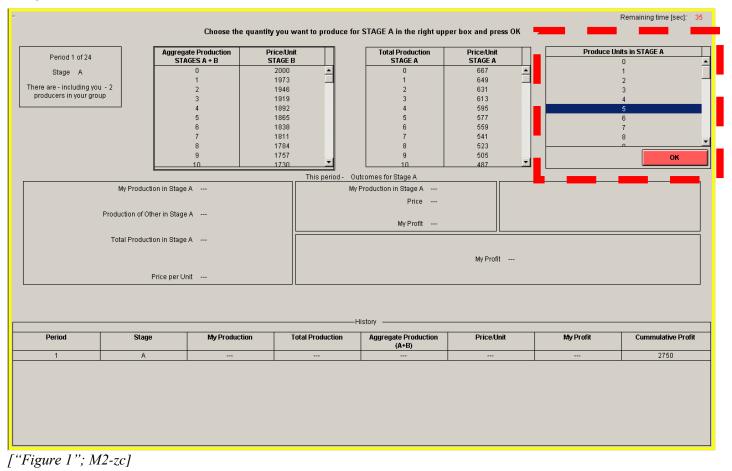
At the beginning of *[each of the 30 periods; M2, M2-zc, M3, M4] [Stage A; M2F, M2F-zc, M3F]* you have to decide how many units of a good to produce. You make your decision by clicking on the number of units listed in the Table and then clicking on the **OK button.** By clicking on the number of units, you highlight the whole row; for an example where a player chose to produce 5 units, see the marked Table in Figure 1.

["Figure 1"; M2F]

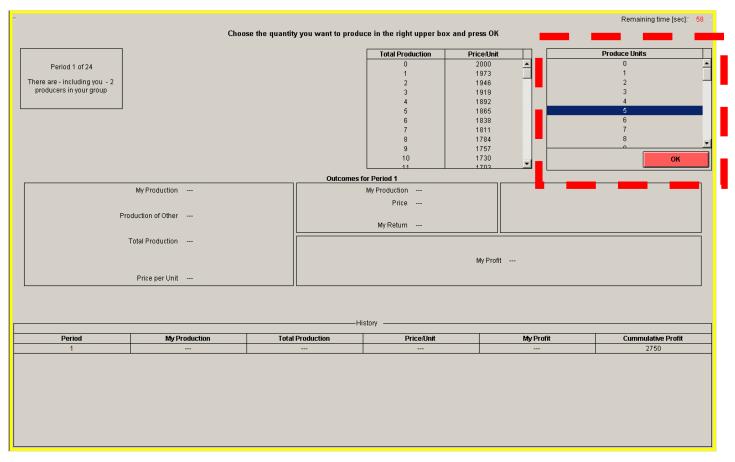
STAGES A + B 0 1 2 3 4 5 6 7	STAGE B 2000 1973 1946 1919 1892 1865		STAGE A 0 1 2 3 4	921 915 909 903 897		STAGE A 0 1 2 3	Cost 0 1 5 9	0 <u>-</u> 1 6
3 4 5 6	1973 1946 1919 1892 1865		1 2	915 909 903		2	5	6
3 4 5 6	1919 1892 1865		-	903				
4 5 6	1892 1865		3 4			3	9	4.5
6	1865		4	007				15
6						4	16	31
			5	890		5	24	55
	1838		6	884		6	35	90
	1811		7	878		7	45 60	135
8	1784		8	872		_8	KU	
9	1757	-	9	866				ок
1				860	╼┛┫└──			
	This				_			
in in Stage A		My Produ	ction					
		F	Price		Cost of t	ne last-unit (Marginal Cost)	
er in Stage A								
		My R(eturn				My Total Cost	
u in Otana é								
In in Stage A								
			My Pr	ofit (My Return - My To)	al Coeth			
			myrro	one (wy restant - wy rot	ar 003t)			
Price per Unit								
Production Cost of the last	unit My Total Cost	History	Augregate	Price/Init	My Refur	n	My Profit	Cummulative Profi
			Production (A+B)			(My	Return - My otal Cost)	
								2750
	IN IN Stage A er in Stage A on in Stage A Price per Unit Price per Unit Production Cost of the last (Marginal Cost	10 1730 Image: A state of the state of	Image: 10 Image: 1730 This period - Outcomes for Outcomes for My Production My Red My Red My Red Price per Unit Production Cost of the last unit My Total Cost Total Production	10 1730 This period - Outcomes for Stage A on in Stage A er in Stage A on in Stage A wy Return wy Production wy Price per Unit History	In In 860 In In 860 In Stage A In My Production In Stage A In In In Stage A In My Production In Stage A In In In Stage A	In In B60 This period - Outcomes for Stage A on in Stage A er in Stage A on in Stage A My Return My Profit (My Return - My Total Cost) Production Cost of the last unit My Total Cost Total Production Area Production Approduction Aggregate Production Act on the last unit	In In In In This period - Outcomes for Stage A on in Stage A Price Out comes for Stage A Price Out comes for Stage A Price Cost of the last unit (My Return Out comes My Profit (My ReturnMy Total Cost) Price per Unit	In In R60 This period - Outcomes for Stage A on In Stage A My Production Price My Production My Return My Return My Profit (My Return My Total Cost) Price per Unit History

["Figure 1"; M2]

["Figure 1"; M3F]


STAGE E 2000 1973 1946 1919 1892 1865 1838 1811 1784 1757 1730	<u> </u>	STACE A 0 1 2 3 4 5 6 7 8 9 9 9 10 Outcomes for Stage A My Production -	833 829 824 820 816 811 807 803 799 794 799		in STAGE A 0 1 2 3 4 5 6 7 8	Cost 0 2 8 18 32 50 70 100 130	0 - 2 10 - 28 60 110 180 280 410
1973 1946 1919 1892 1865 1838 1811 1784 1757	This period -	3 4 5 7 8 9 10 Outcomes for Stage A	829 824 810 811 807 803 799 794 790		2 3 4 5 6	8 18 32 50 70 100	2 10 28 60 110 180 280
1946 1919 1892 1865 1838 1811 1784 1757	This period -	3 4 5 7 8 9 10 Outcomes for Stage A	824 820 816 811 807 803 799 794 799		3 4 5 6	8 18 32 50 70 100	10 - 28 60 110 180 280
1892 1865 1838 1811 1784 1757	This period -	4 5 6 7 8 9 10 Outcomes for Stage A	816 811 807 803 799 794 794		4 5 6	32 50 70 100	60 110 180 280
1892 1865 1838 1811 1784 1757	This period -	6 7 8 9 10 Outcomes for Stage A	816 811 807 803 799 794 794		5	50 70 100	110 180 280
1838 1811 1784 1757	This period -	6 7 8 9 10 Outcomes for Stage A	807 803 799 794 790		6	70 100	180 280
1811 1784 1757	This period -	7 8 9 10 Outcomes for Stage A	803 799 794 790			100	280
1784 1757	This period -	S 9 10 Outcomes for Stage A	799 794 790		7		
1757	This period -	9 10 Outcomes for Stage A	794 790		<u> </u>	130	<u>/10</u>
	This period -	10 Outcomes for Stage A	790			ſ	
1730_	This period -	Outcomes for Stage A					ок
	This period -					L L	UN
		My Broduction					
		Wy Floudcholl	-			My Production	
		Price		0.04	st of the last unit (
		Fille -			nor morade anne (marginar cooty	
		My Return	-			My Total Cost	
			Mv Profit (Mv Return	- Mv Total Cost)			
			,	,			
of the last unit	stal Coet Tatal	-History	rogato Price I	nit BA.T	Doturn	May Drofft	Cummulative Profi
		Pro	duction		(My	Return - My	
							2750
	rginal Cost)	Irginal Cost)		History	History	My Profit (My Return - My Total Cost) History Of the last unit rginal Cost) My Total Cost Total Production Production (A+B) Price/Unit My Return (My Return (My Return)	My Profit (My Return - My Total Cost) History

["Figure 1"; M3]


				Total	roduction	Price/Unit		Produce Units	Marginal Cos	t Total Cost
				TULAT	0	2000		0	inarginar cos	
Period 1 of 2	24				1	1973			2	2
here are - includin	a vou - 3				2	1946		2	8	10
producers in your					3	1919		3	18	28
					4	1892		4	32	60
					5	1865		5	50	110
					6	1838		6	70	180
					7	1811		7	100	280
					8	1784		8	130	410
					9	1757			160	570
					10	1730				ОК
					11	1703	<u> </u>			UN
				Outcomes for Period 1						
	My Produ	ction		My Product	on				My Production	
	,				ce		0	ost of the last unit		
				FI	e			bot of the fast anit	(marginar 005t	·
	Production of Ot	thers								
				My Reti	im				My Total Cost	t
	Total Produ	ction								
	Total Toda	5001								
					My P	rofit (My Return -	My Total Cost			
					my i	rom (my rectan)	my rotar costy			
	Price per	rUnit								
				History						
		Cost of the last unit	My Total Cost	Total Production	Price/Ur	nit	My Return	My Pr (My Return		Cummulative Pro
Period	My Production	(Marginal Cost)								
Period	My Production							Cos	t)	2750

0 0 0 3 3 3 12 15 30 45 55 100 85 185 120 305 170 475 220 695 200 276 0K	5 5 5 5 5 5 5 5 5
12 15 30 45 55 100 85 185 120 305 170 475 220 695 200 075 OK	5 . 0 5 5 5 5 5 5
30 45 55 100 85 185 120 305 170 475 220 695 300 97 OK 05	5 - 0 5 5 5 5 5
55 100 85 185 120 305 170 475 220 695 200 275 OK 260	0 5 5 5 5
85 185 120 305 170 475 220 695 200 075	5 5 5 5
120 305 170 475 220 695 200 075 0K	5 5 5
170 475 220 695 200 075 OK	5 5
220 695 200 075 0K	5
000 075 OK	<u> </u>
ОК	
	(
My Production	_
My Production	
My Production	
Myrroddenon	
t (Marginal Cost)	
My Total Cost	
my rotar cost	
rofit Cummulative	/e Profit
	<u></u>
s	

["Figure 1"; M2F-zc]

To make your choice you have **one minute**; if you have not made a choice (and clicked on the OK button) then yet, the computer will assign you the default choice of zero. This is the standard procedure for all decisions in the experiment.

["Next to the number of the units of the good you might want to produce (Produce Units), you find the cost of each unit (Marginal Cost), and the Total Cost"; M2, M2F, M3, M3F, M4]

["Thus the cost of the 1^{st} unit is 1, of the 2^{nd} unit is 5, of the 3^{rd} unit is 9, and so on."; M2,M2F]

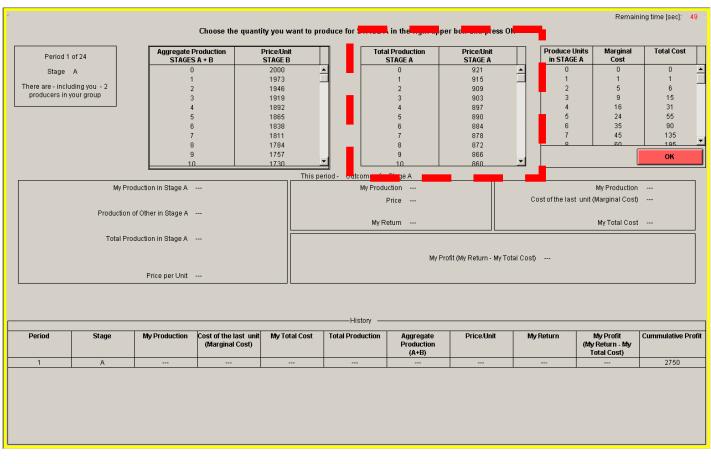
["Thus the cost of the 1^{st} unit is 2, of the 2^{nd} unit is 8, of the 3^{rd} unit is 18, and so on."; M3, M3F]

["Thus the cost of the 1^{st} unit is 3, of the 2^{nd} unit is 12, of the 3^{rd} unit is 30, and so on."; M4]

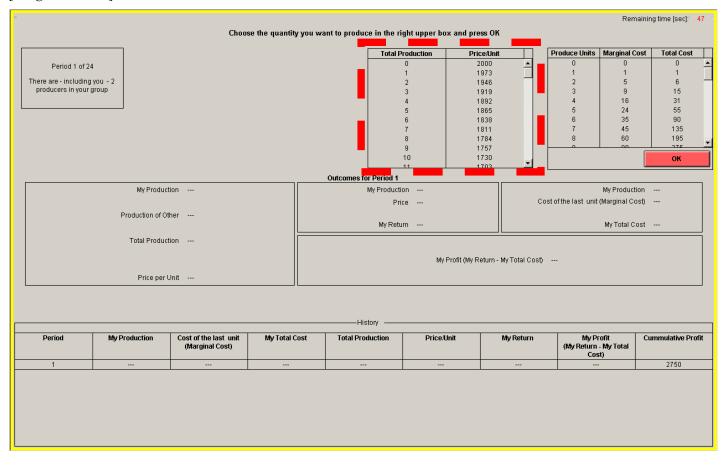
["The total cost of units produced is equal to the sum of the marginal costs of units produced."; M2,M2F, M3, M3F, M4]

["Producing a total of 1 unit thus cost 1, a total of 2 units costs 6, a total of 3 units costs 15, and so on."; M2,M2F]

["Producing a total of 1 unit thus cost 2, a total of 2 units costs 10, a total of 3 units costs 28, and so on."; M3, M3F]

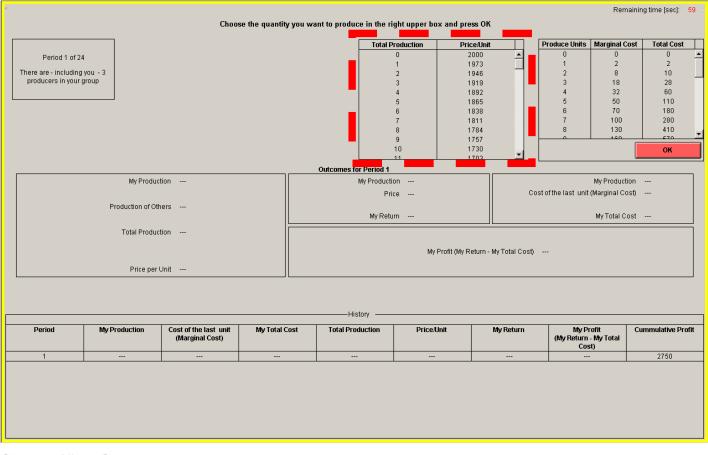

["Producing a total of 1 unit thus cost 3, a total of 2 units costs 15, a total of 3 units costs 45, and so on."; M4]

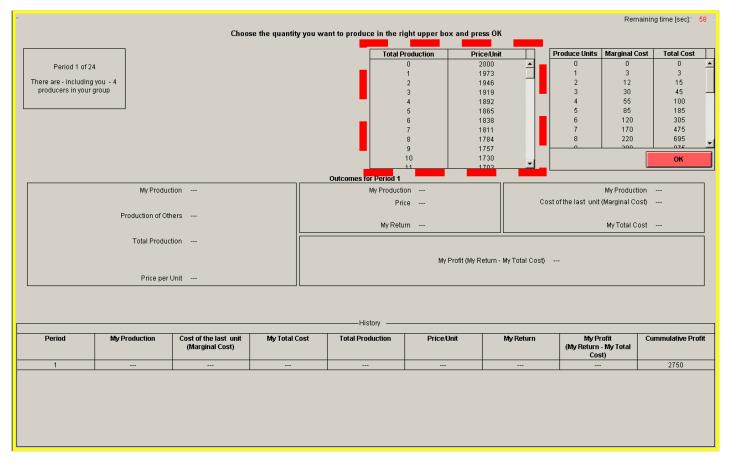
The total number of units produced in *["the market"; M2, M2-zc, M3, M4] ["Stage A"; M2F, M2F-zc, M3F]* is called "Total Production."


After all firms have made their decisions, the computer will calculate your profits for ["that period."; M2, M2zc, M3, M4] ["Stage A."; M2F, M2F-zc, M3F] ["Your return will be equal to the number of units you produce times the market price; your profit will be equal to your return minus your total cost."; M2, M2F, M3, M3F, M4]["Your profit will be equal to the number of units you produce times the market price"; M2-zc, M2F-zc]

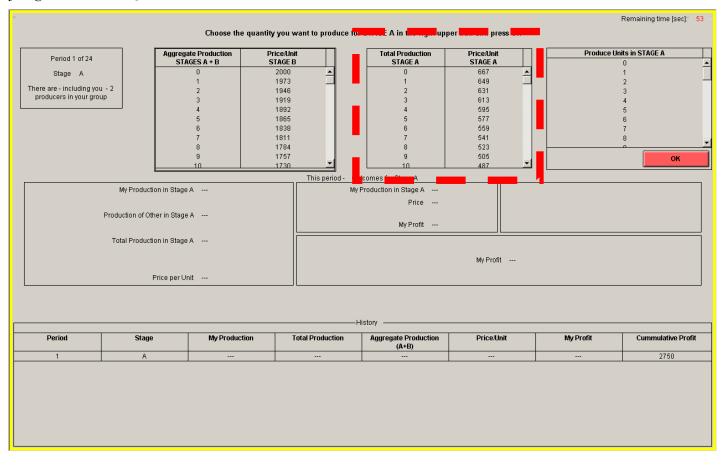
The market price will depend on the total production in your market; the more units you and the other ["Producer"; M2, M2-zc, M2F, M2F-zc] ["Producers"; M3, M3F, M4] produced, the lower the price per unit will be. The precise relation you can find in the Table labeled ["Total Production STAGE A and Resulting Price in STAGE A"; M2F, M2F-zc, M3F] ["Total Production and Resulting Price"; M2,M2-zc,M3,M4], that you find in the end of the instructions on page ["92";M2F]["94";M2F-zc]["96";M3F]["Error! Bookmark not defined."; M2, M2-zc, M3, M4. It is also shown on your screen on top in the middle. In the example, see the marked Table in Figure 2.

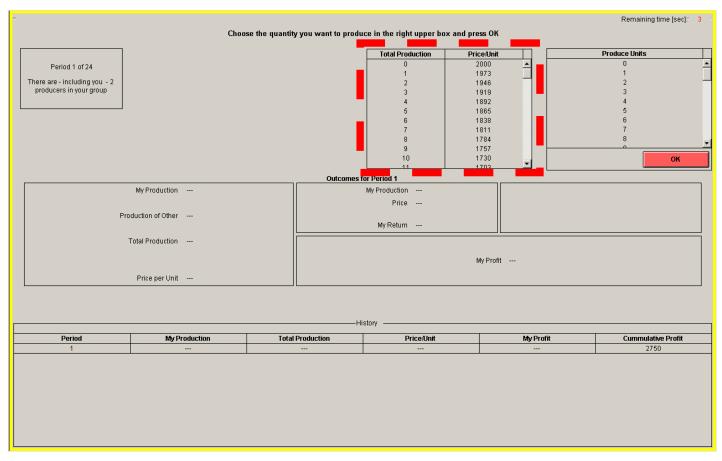
["Figure 2"; M2F]


["Figure 2"; M2]


["Figure 2"; M3F]

Period 1 of 24	Aggregate STAGE	Production S A + B	Price/Unit STAGE B		al Production STAGE A	Price/Unit STAGE A		Produce Unit in STAGE A		Total Cost
Stage A		0	2000		0	833	-	0	0	0
-			1973		1	829		1	2	2
There are - including you - 3		2	1946		2	824		2	8	10
producers in your group		3	1919		3	820		3	18	28
		4	1892		4	816		4	32	60
		5	1865		5	811		5	50	110
		6	1838		6	807		6	70	180
		7	1811		7	803		7	100	280
		B	1784		8	799		-	130	
		9	1757		9	794				ОК
	1	n	1730	<u> </u>	10	790	•			
			This p	period - Jatcom	Otoge A					
	ly Production in Stage A			My Prod	luction				My Production	
					Price		с	ost of the last jur	nit (Marginal Cost)
					11100					
Produc	tion of Others in Stage A				_ .					
				My F	Return				My Total Cost	
-										
10	al Production in Stage A]				
To	al Production in Stage A][
Το	al Production in Stage A				My F	Profit (My Return - My T	otal Cost)			
To	al Production in Stage A				My F	Profit (My Return - My T	otal Cost)			
Ic	al Production in Stage A Price per Unit				My F	Profit (My Return - My T	otal Cost)			
To Period Stage			t My Total Cost	History -	Aggregate Production	Profit (My Return - My T		Return	My Profit My Return - My Total Cost)	Cummulative Pr
	Price per Unit	 Cost of the last unit	t My Total Cost		Aggregate			Return		Cummulative Pr 2750


["Figure 2"; M3]

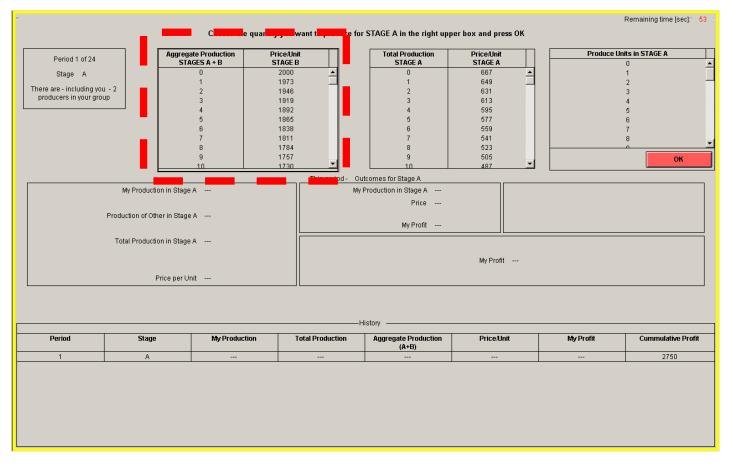

["Figure 2"; M4]

["Figure 2"; M2F-zc]

["Figure 2"; M2-zc]

This Table gives you the market price in ECU. Thus, in the example in Figure 2, if total production was zero (that is, if no firm in the market produced anything at all), then the price per unit would be ["921"; M2F] ["667"; M2F-zc] ["833"; M3F] ["2000"; M2,M2-zc, M3, M4] ECU.

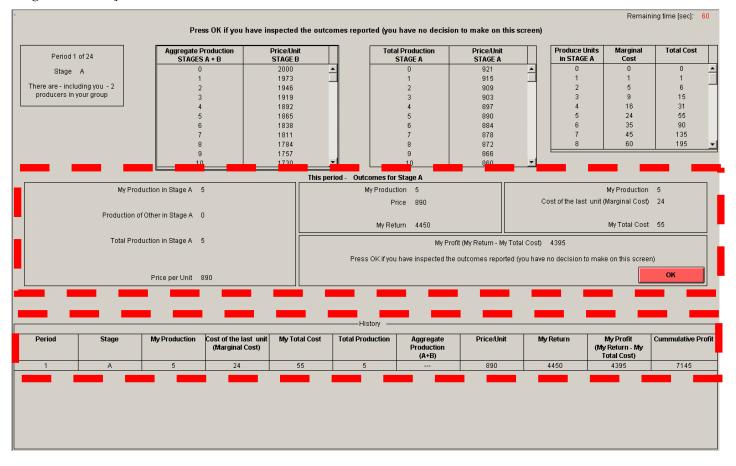
["On the upper left of the screen is a Table that shows the Market price in Stage B, given the total production in Stage A and Stage B together. **The sum of the total production in Stage A and B is called "the Aggregate Production".** In the example, see the marked Table in Figure 3. This Table is relevant for the market price in Stage B. "; M2F, M2F-zc, M3F]

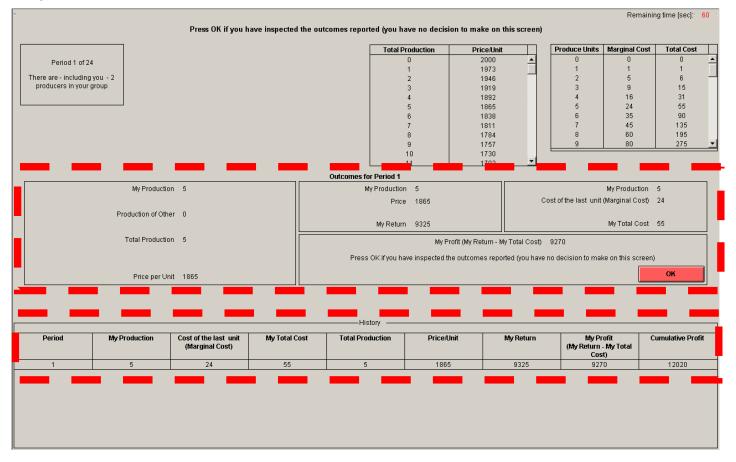

["Figure 3"; M2F]

Period 1 of 24	Aggregate Pi STAGES	Price/Unit STAGE B	Tot	tal Production STAGE A	Price/Unit STAGE A		Produce Units in STAGE A	Marginal Cost	Total Cost
Stage A	0	 2000		0	921	-	0	0	0
	1	1973		1	915		1	1	1
There are - including you - 2	2	1946		2	909		2	5	6
producers in your group	3	1919		3	903		3	9	15
	4	1892		4	897		4	16	31
	- 5	1865		5	890		5	24	55
	6	1838		6	884		6	35	90
	_ 7	1811		7	878		7	45	135
	8	1784		8	872		8	0.0	195
	9	1757		9	866				ок
	10	1730	_ _	10	860	•			
		This .	nipd - Outcomes fo	or Stage A					
My P	roduction in Stage A		My Proc	duction				My Production	
				Price		Cr	st of the last unit	t (Marginal Cost)	
				11106				· (
Productio	n of Other in Stage A								
			Myl	Return				My Total Cost	
Total P	roduction in Stage A][
Total P	roduction in Stage A -			My	Profit (My Return - My Tr	otal Cost)			
Total P Period Stage 1 A	Price per Unit	My Total Cost	History –		Profit (My Return - My Tr		Return (M	My Profit by Return - My Total Cost)	Cummulative Pro

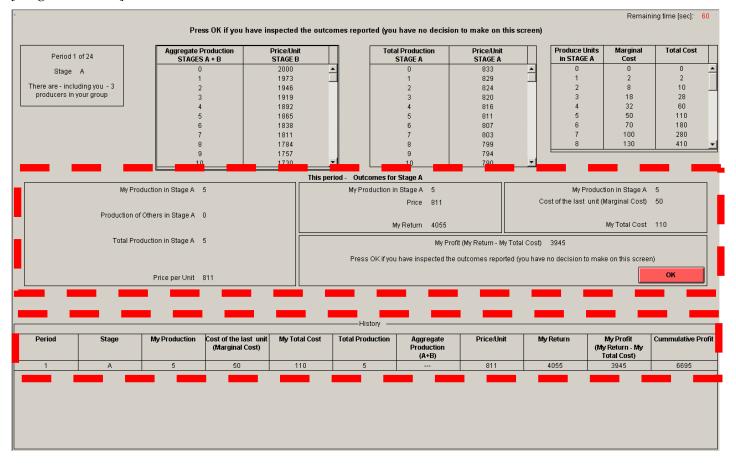
["Figure 3"; M3F]

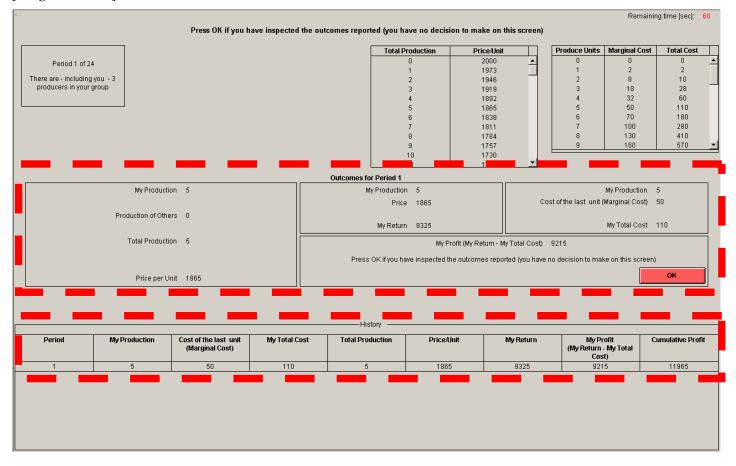
Period 1 of 24		Aggregate Pro	duction	Price/Unit		otal Production	Price/Unit		Produce Units	s Marginal	Total Cost
1 01100 1 0121		STAGES A	+B	STAGE B		STAGE A	STAGE A		in STAGE A	Cost	Total Cost
Stage A		0		2000		0	833	<u> </u>	0	0	0
-		1		1973		1	829		1	2	2
There are - including you - 3		2		1946		2	824		2	8	10
producers in your group		3		1919		3	820		3	18	28
	'	4		1892		4	816		4	32	60
		5		1865		5	811		5	50	110
		6		1838		6	807		6	70	180
		8		1811 1784		8	803 799		7	100	280
		9		1784		9	799				
		10		1730	-	9 10	794	-			ок
	- T.	<u> </u>			pd - Outcomes					````	
	My Product	tion in Stage A				oduction				My Production	
	,				,	Price		0	oct of the lact un	it (Marginal Cost)	
						Price		^o	USE OF LITE TASE OF	ni (Marginar Cost)	
Produ	ction of Oth	iers in Stage A	-								
To		tion in Stage A			M	y Return				My Total Cost	
Τα	tal Product				M		Profit (My Return - My Tr	otal Cost;	·	My Total Cost	:
Te Period Stage	tal Product	tion in Stage A Price per Unit ty Production C		My Total Cost	History		Profit (My Return - My Tr		Return	My Total Cost My Profit My Return - My Total Cost)	Cummulative P

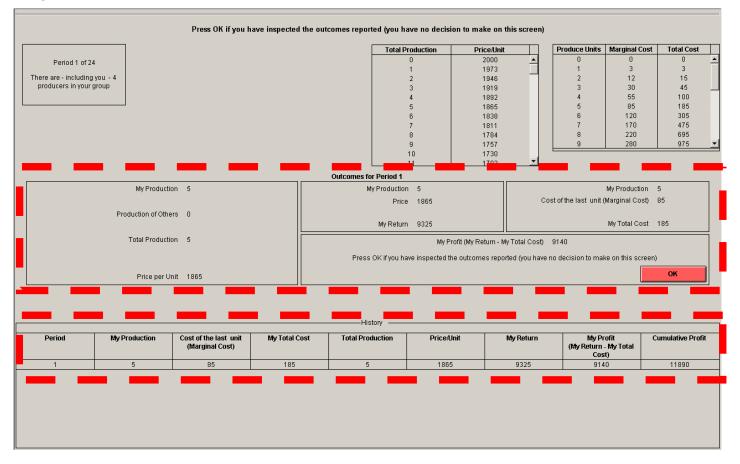

["Figure 3"; M2F-zc]

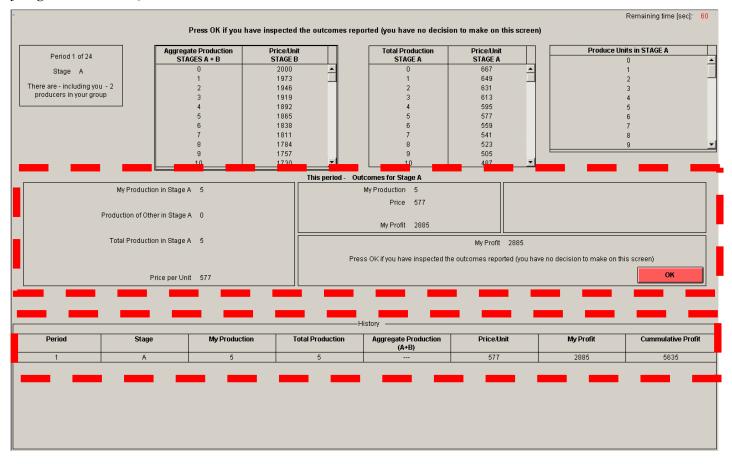

At the end of ["each period"; M2, M2-zc, M3, M4]["Stage A"; M2F, M2F-zc, M3F] you will see a "Results Screen." The Results Screen will show the outcomes for ["that period"; M2, M2-zc, M3, M4] ["Stage A"; M2F, M2F-zc, M3F], displayed in the middle of your screen. You have **one minute** to inspect the outcomes (this is the standard time you have for inspecting results).

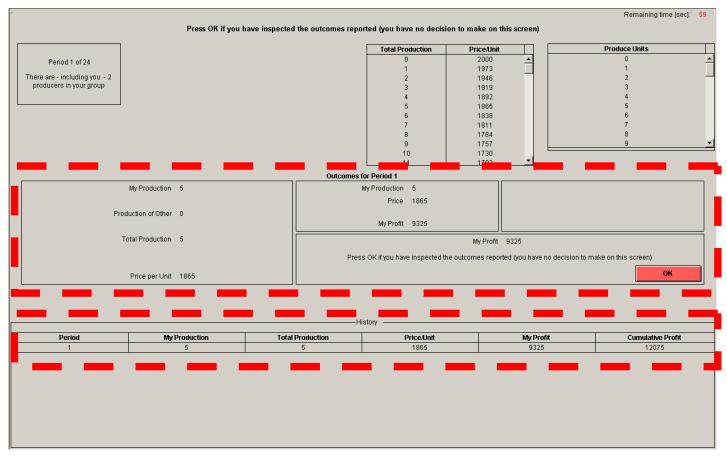
The example in Figure ["4"; M2F, M2F-zc, M3F] ["3"; M2,M2-zc, M3, M4] illustrates the display of the results in the middle box. All results are also written in the History box, displayed in the lower part of your screen (the marked box below in Figure ["4"; M2F, M2F-zc, M3F] ["3"; M2, M2-zc, M3, M4]).


"Figure 4"; M2F]


["Figure 3"; M2]


["Figure 4"; M3F]


["Figure 3"; M3]


["Figure 3"; M4]

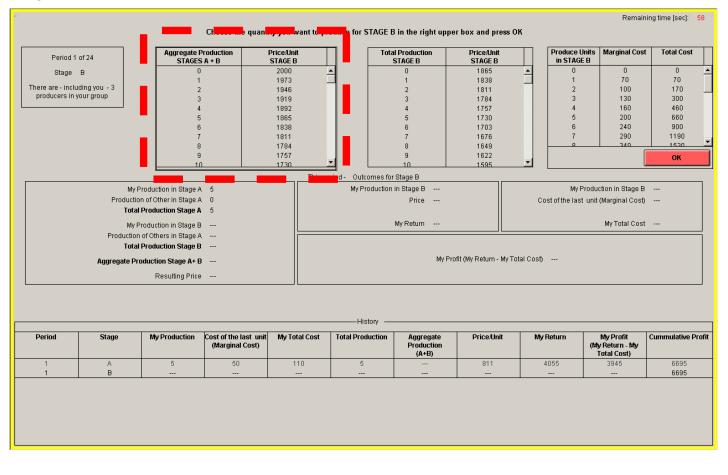
["Figure 4"; M2F-zc]

["Figure 3"; M2-zc]

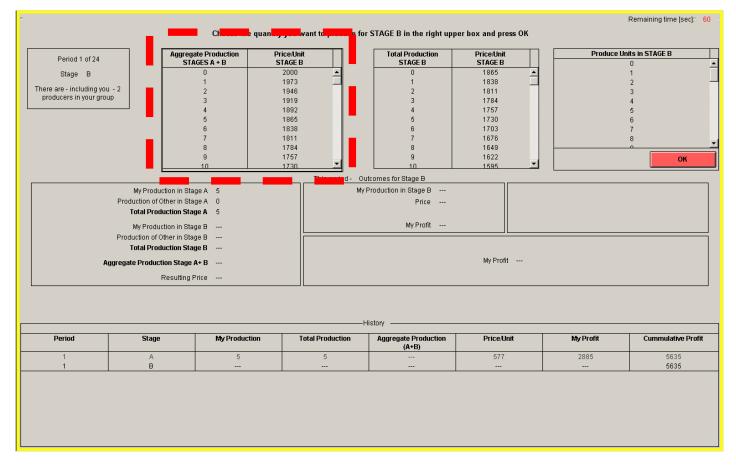
[From here on only M2F, M2F-zc, M3F]

A.2.2. Stage B

Stage B is, in principle, identical to Stage A, but with one important exception. The way the price per unit is computed in Stage B differs in two ways from the way it was computed in Stage A.


Firstly, the price per unit in Stage B depends on the **aggregate production**; the sum of the total production in Stage A and Stage B. The higher aggregate production is, the lower the price per unit will be.

Secondly, a different Table will be used for calculating the price per unit: the Table labeled "**Aggregate Production STAGES A + B and Resulting Price in Stage B**". The Table shows the price per unit, given the aggregate production of Stage A and Stage B together. You can find this Table in the end of the instructions on page 98. It is also shown on your screen on top on the left side. In the example, see Figure 5.



["Figure 5"; M2F]

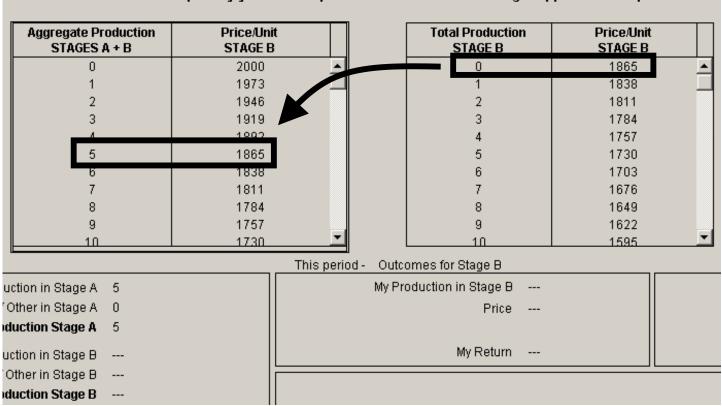
["Figure 5"; M3F]

["Figure 5"; M2F-zc]

To make it easier for you to decide how many units to produce in Stage B, the screen shows the Table "**Total Production Stage B**" on top and in the middle of the screen. See the marked Table in Figure 6. This Table basically gives the same information as the Table "Aggregate Production STAGES A +B" on the left, but automatically uses the total production in Stage A to calculate prices.

["Figure 6"; **M2F**]

Period 1 of 2	24	Aggregate Pr STAGES		Price/Unit STAGE B		TO	tal Production STAGE B	Price/Unit STAGE B		Produce Units in STAGE B	Marginal Cos	t Total Cost
Stage B		0		2000	_		0	1865		0	0	0
-		1		1973			1	1838		1	35	35
There are - includin		2		1946			2	1811		2	45	80
producers in you	r group	3		1919			3	1784		3	60	140
		4		1892			4	1757		4	80	220
		5		1865			5	1730		5	90	310
		6		1838			6	1703		6	115	425
		7		1811			7	1676		7	130	555
		8		1784			8	1649		P 8	160	715
		9		1757			9	1622				ОК
		10		1730	<u>-</u>		10	1595	•			
					This perio	od - Jatcom	e B					
	Mv Pr	oduction in Stage A	5			My Productio	on in Stage B			Mv Prod	uction in Stage B	
		of Other in Stage A				,	Price		Cost of the last unit (Marginal Cost)			
		roduction Stage A					The				it (warginar Cost,	
	Totarr	Touccion Stage A	5									
	My Pr	oduction in Stage B			My Return My Total Cost							
	Production	of Other in Stage B										
	Total F	roduction Stage B										
	Auronaute Des	hunding Otana A. D					Mb/ I	Profit (My Return - 1	dy Total Cost	n		
	Aggregate Pro	duction Stage A+ B						r ront (my rectann i	ny 10tai 000	9		
		Resulting Price										
						——History -						
Period	Stage	My Production	Cost of the last unit (Marginal Cost)	My Total	Cost	Total Production	Aggregate Production (A+B)	Price/Unit	M	y Return (f	My Profit Ay Return - My Total Cost)	Cummulative P
1	A	5	24	55		5		890		4450	4395	7145
1	в											7145


["Figure 6"; **M3F**]

c										Remain	ning time [sec]:"	58
			Choose the quanti	ty you want	to produce for	in the	per bo ne and	ress Ol	L			
						T (IP I (I			Durathan Huite		Tatal Cast	
Period 1 o	if 24	Aggregate P STAGES		Price/Unit STAGE B		Total Productio STAGE B	n Price/Unit STAGE B		Produce Units in STAGE B	Marginal Cost	t Total Cost	
Stage 8	э –	0		2000		0	1865	-	0	0	0	
-		1		1973		1	1838		1	70	70	
There are - includ		2		1946		2	1811		2	100	170	
producers in yo	ur group	3		1919		3	1784		3	130	300	
		4		1892		4	1757		4	160	460	
		5		1865		5	1730		5	200	660	
		6		1838	-	6	1703		6	240	900	
		7		1811		7	1676		7	290	1190	
		8		1784		8	1649		<u> </u>	340	1530	<u> </u>
		9		1757		9	1622				ок	
		10		1730		10	1595	•		l		
				Т	his period - 🛃	com <mark>re (n Cie</mark> ge B						
	My Pr	oduction in Stage A	5		My P	roduction in Stage B			My Produ	iction in Stage B		
		of Other in Stage A				Price			ost of the last unit	-		
		Production Stage A				11100			JSI UI IIIE IASI. UIII	(Marginar Cosp		
	Totarr	1000ction stage A	5									
	My Pr	oduction in Stage B				My Return				My Total Cost		
	Production of	of Others in Stage A										Ĩ
		roduction Stage B										
		duction Stage A+ B					My Profit (My Return -	Mv Total Cost)				
	Aggregate Pro	-					my	my				
		Resulting Price										
												-
					————Hi	story ———						_
Period	Stage	My Production	Cost of the last unit	My Total Co	st Total Pro	duction Aggree	jate Price/Un	nit My	Return	My Profit	Cummulative P	ofit
	-	-	(Marginal Cost)	Ē		Produc (A+E				y Return - My Total Cost)		
1	A	5	50	110	5		811		4055	3945	6695	
1	B										6695	

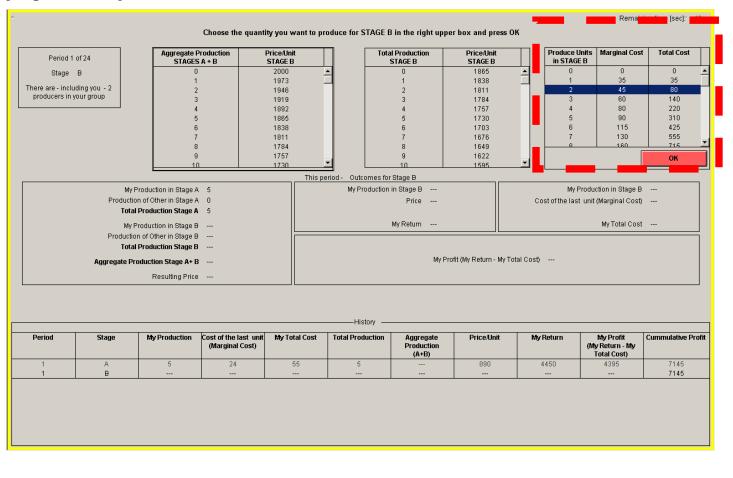
["Figure 6"; M2F-zc]

Period 1 of 24										
	Aggre	ate Production AGES A + B	Price/Unit STAGE B			Total Production STAGE B	Price/Unit STAGE B		Produce	Units in STAGE B
Stage B		0	2000	_		0	1865	_		1
		1	1973			1	1838			2
here are - including you - 2		2	1946			2	1811			3
producers in your group		3	1919			3	1784			4
	- 1	4	1892			4	1757			5
		5	1865			5	1730			6
		6	1838			6	1703			7
		7	1811			7	1676			8
		8	1784			8	1649		T	
		9	1757	-		9	1622	-		ОК
		10	1730		1	10	1595			
				This period -						
	My Production in St	age A 5			My Pro	duction in Stage B				
F	Production of Other in St	age A O				Price				
	Total Production St	ageA 5								
	My Production in St	- # - D		My Profit						
,	roduction of Other in St									
F										
	Total Production St	age B								
Aggr	egate Production Stage	A+B		My Profit						
	Resulting	Price								
						ory				
Period	Stage	My Production	n To	tal Production		Aggregate Production (A+B)	Price/Unit		My Profit	Cummulative Pr
	A	5		5			577		2885	5635
1										5635

In the example in Figure 6 the total production in Stage A was 5 units. Thus if the total production in Stage B is 0, then the aggregate production of Stages A and B together is 5. Figure 7 shows a close-up of the Tables for this example. As you can see, the Table "Aggregate Production" on the left shows the same prices as the Table "Total Production Stage B" on the right, but prices are assigned to production levels that are 5 units higher; an upwards shift. In each round the upward shift will be equal to the total production in Stage A (which was 5 in this example).

Choose the quantity you want to produce for STAGE B in the right upper box and press OK

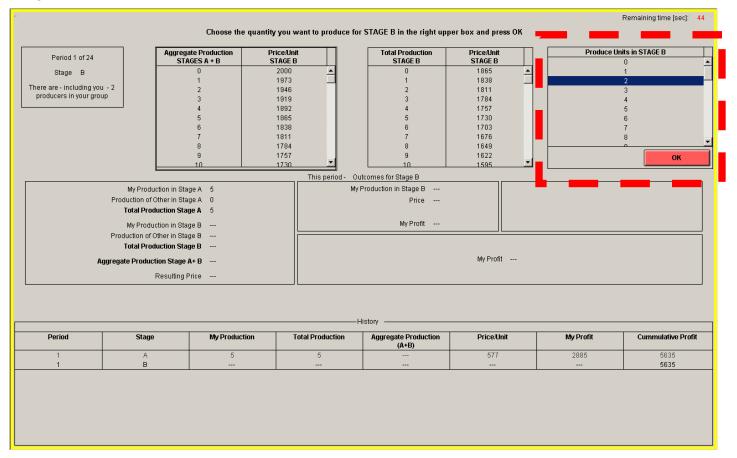
["Your return will be equal to the number of units you produce times the market price; your profit will be equal to your return minus your total cost."; M2F, M3F]["Your profit will be equal to the number of units you produce times the market price"; M2F-zc]


You choose the number of units in the same box in the upper right part of the screen as in Stage A. The marked box in Figure 8 shows the number of units to produce in Stage B. ["Next to this number are the marginal cost and the total cost.

Suppose, as in the example in Figure 8, you sold 5 units in Stage A and that in Stage B you want to sell an additional 2 units. You then select 2 units as in the example in Figure 8."; M2F, M3F]

["Your total cost are then equal to the marginal cost of the first unit (35) and the marginal cost of the 2^{nd} unit (45), which is equal to 80 (35 + 45)."; M2F]

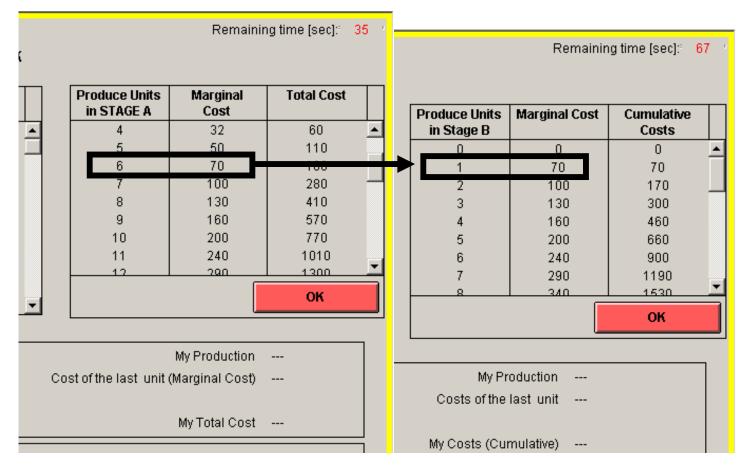
["Your total cost are then equal to the marginal cost of the first unit (70) and the marginal cost of the 2^{nd} unit (100), which is equal to 170 (70 + 100)."; M3F]


["Figure 8"; M2F]

["Figure 8"; M3F]

Stage B There are - includii producers in you	ing you - 3		STAGE B		al Production STAGE B	Price/Unit STAGE B		Produce Units in STAGE B			
		0	2000	▲	0	1865	-	0	0	0	Ŀ
		1	1973		1	1838		1	70	70	
producers in yo		2	1946		2	1811		2	100	170	
	ur group	3	1919		3	1784		3	130	300	
		4	1892		4	1757		4	160	460	
		5	1865		5	1730		5	200	660	
		6	1838		6	1703		6	240	900	
		7	1811		7	1676		7	290	1190	
		8	1784		8	1649			340	1530	_
		9	1757		9	1622				ок	
		10	1730	L	10	1595			l		_
			Thi	s period - Outcomes for	r Stage B			_	_		
	My P	roduction in Stage A 5		My Production	in Stage B		_	My Produc	tion in <mark>Stage B</mark>		
	Production	n of Other in Stage A 0			Price		Cos	st of the last unit	(Marginal Cost)		
		Production Stage A 5							(
		-									
	My Pi	roduction in Stage B			My Return				My Total Cost		
	Production	of Others in Stage A									=
	Total	Production Stage B									
					My Pr	ofit (My Return - My To	tal Coeth				
	Aggregate Pro	duction Stage A+ B			WIY I I	one (wy restant - wy ro	ai oosiy				
		Resulting Price									
		-									
Period	Stage	My Production Cost of the la (Marginal d			Aggregate Production (0+P)	Price/Unit	My R	(M)	My Profit Return - My	Cummulative Pr	rofi
Period	Stage					Price/Unit 811		(M)		Cummulative Pr	rofi

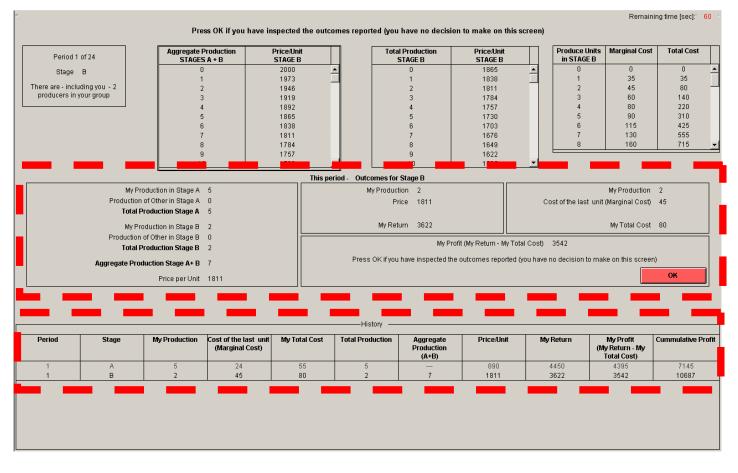
["Figure 8"; M2F-zc]

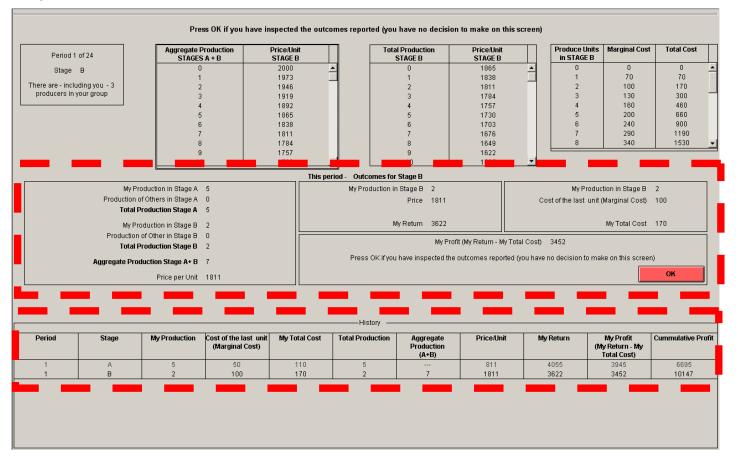


["Note that the marginal costs in Stage B are the same ones as in Stage A, but we start counting from the number of units that were produced in Stage A. In the example in Figure 9 the producer produced 5 units in Stage A. On the right side are shown his marginal costs in Stage A, on the left his marginal costs in Stage B. In Stage B, the marginal cost of the 1^{st} unit is equal to that of the 6^{th} unit in Stage A, of the 2^{nd} unit to that of the 7^{th} unit in Stage A, of the 3^{rd} unit to that of the 8^{th} unit in Stage A, and so forth (a shift equal to the production in Stage A, which is 5)."; M2F, M3F]

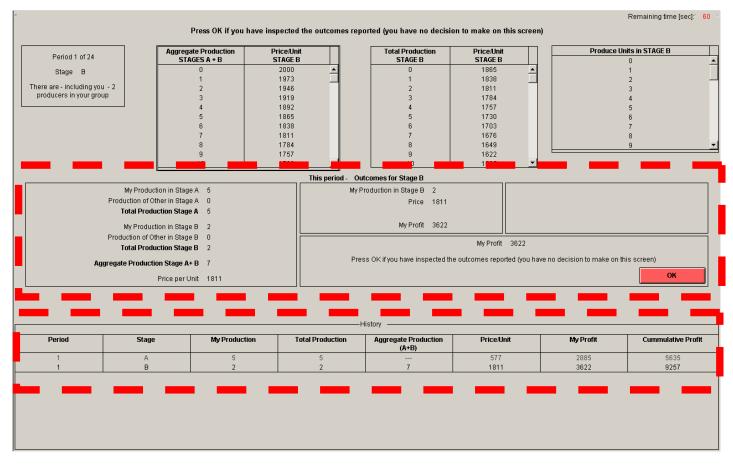
["Figure 9"; M2F]

			Remainin	ig time [sec]:° 5	3 '			Remainir	ig time (sec):° ∣	69 '
		Produce Units in STAGE A	Marginal Cost 16	Total Cost			Produce Units in STAGE B	Marginal Cost	Total Cost	\square
-		5	24	55			0	0	0	
		6	35	30			1	35	35	
		7	45	135			2	45	80	
		8	60	195			3	60	140	
		9	80	275			4	80	220	
		10	90	365			5	90	310	
		11	115	480			6	115	425	
		17	130	610	<u> </u>		7	130	555	
				ок			8	160	715	<u>ا</u>
-									ОК	
			My Production		1					
	0.04	at of the least unit /					My Produ	tion in Stage B		٦ [
	COS	st of the last unit (warginal Cost)			Co	st of the last unit	_		
			My Total Cost					My Total Cost		
					1			My Total Cost		


["Figure 9"; M3F]


At the end of Stage B, you will again see a Results Screen showing similar information as the Results Screen described above. The Results Screen will show the outcomes for that period, displayed in the middle of your screen. You have **one minute** to inspect the outcomes.

The example in Figure ["10"; M2F, M3F] ["9"; M2F-zc] illustrates the display of the results in the middle box. You can also find all results in the History box, displayed in the lower part of your screen (the lower marked box in Figure ["10"; M2F, M3F] ["9"; M2F-zc]).


["Figure 10"; M2F]

["Figure 10"; M3F]

["Figure 9"; M2F-zc]

["Do you have any questions? The better you understand the setup, the better you will be able to make good decisions that increase your earnings.";M2, M2-zc, M2F, M2F-zc, M3, M3F, M4]

[Only for M2F, M2F-zc, M3F]

The following questions serve to test your understanding of the key relationships in the decision task. Write down your answers. Use the Tables in the back of the instructions.

1. In round 1 total production in Stage A is 22 and the total production in B is 10

What is the price per unit in Stage A?	
What is the price per unit in Stage B?	

Answers:

1. In round 1 total production in Stage A is 22 and the total production in B is 10

What is the price per unit in Stage A?	788; M2F
	271;M2F-zc
	739; M3F
What is the price per unit in Stage B?	1136; M2F, M2F-zc, M3F

[End only for M2,F, M2F-zc, M3F]

[Only for M2,F, M3F]

2. In round 1 a Producer produces 3 units in Stage A, and then 7 units in Stage B.

What is the cost of the last unit (marginal cost) for the Producer	
in Stage A	
What is the cost of the last unit (marginal cost) for the Producer	
in Stage B	
What is the total cost of the Producer in round 1?	

Answers:

2. In round 1 a Producer produces 3 units in Stage A, and then 7 units in Stage B.

What is the cost of the last unit (marginal cost) for the Producer	9; M2F
in Stage A	18; M3, M3F
	30; M4

What is the cost of the last unit (marginal cost) for the Producer	90; M2, M2F
in Stage B	200; M3, M3F
	345; M4
What is the total cost of the Producer in round 1?	365; M2F
	770; M3, M3F
	1320; M4

Units	Marginal	Total		
Produced	Costs	Costs		
1	1	1		
2	5	6		
3	9	15		
4	16	31		
5	24	55		
6	35	90		
7	45	135		
8	60	195		
9	80	275		
10	90	365		
11	115	480		
12	130	610		
13	160	770		
14	180	950		
15	210	1160		
16	230	1390		
17	260	1650		
18	300	1950		
19	330	2280		
20	360	2640		
21	410	3050		
22	430	3480		
23	490	3970		
24	520	4490		

Production Costs

Units	Marginal	Total
produced	Costs	Costs
25	560	5050
26	620	5670
27	660	6330
28	710	f40
29	760	7800
30	810	8610
31	870	9480
32	920	10400
33	1000	11400
34	1050	12450
35	1100	13550
36	1150	14700
37	1230	15930
38	1320	17250
39	1350	18600
40	1450	20050
41	1500	21550
42	1600	23150
43	1650	24800
44	1750	26550
45	1800	28350
46	1900	30250
47	2000	32250
48	2050	34300

[M3, M3F only]

Production Costs

Units	Marginal	Total Costs	
Produced	Costs		
0	0	0	
1	2	2	
2	8	10	
3	18	28	
4	32	60	
5	50	110	
6	70	180	
7	100	280	
8	130	410	
9	160	570	
10	200	770	
11	240	1010	
12	290	1300	
13	340	1640	
14	390	2030	
15	450	2480	
16	510	2990	
17	580	3570	
18	650	4220	
19	720	4940	
20	800	5740	
21	880	6620	
22	970	7590	
23	1060	8650	
24	1150	9800	
25	1250	11050	
26	1350	12400	
27	1450	13850	
28	1600	15450	

29	1650	17100
30	1800	18900
31	1950	20850
32	2050	22900

[M4 only]

Production Costs

Units	Marginal	Total Costs
produced	Costs	
0	0	0
1	3	3
2	12	15
3	30	45
4	55	100
5	85	185
6	120	305
7	170	475
8	220	695
9	280	975
10	345	1320
11	420	1740
12	500	2240
13	590	2830
14	690	3520
15	790	4310
16	890	5200
17	1010	6210
18	1140	7350
19	1270	8620
20	1380	10000
21	1550	11550
22	1700	13250
23	1900	15150
24	2000	17150

Total Production STAGE A and Resulting Price in STAGE A

Total	Price/unit	Total	Price/unit	Total	Price/unit
production	STAGE A	production	STAGE A	production	STAGE A
STAGE A		STAGE A		STAGE A	
0	921	33	723	6	6 218
1	915	34	717	6	7 191
2	909	35	711	6	8 164
3	903	36	705	6	9 137
4	897	37	699	7	0 110
5	890	38	693	7	1 83
6	884	39	688	7	2 56
7	878	40	682	7	3 29
8	872	41	676	7	4 2
9	866	42	670	7	5 0
10	860	43	664	7	6 0
11	854	44	659	7	7 0
12	848	45	653	7	8 0
13	842	46	647	7	9 0
14	836	47	641	8	0 0
15	830	48	636	8	1 0
16	824	49	630	8	2 0
17	818	50	624	8	3 0
18	812	51	619	8	4 0
19	806	52	596	8	5 0
20	800	53	569	8	6 0
21	794	54	542	8	7 0
22	788	55	515	8	8 0
23	782	56	488	8	9 0
24	776	57	461	9	0 0
25	770	58	434	9	1 0
26	764	59	407	9	2 0
27	758	60	380	9	3 0

28	752
29	746
30	740
31	734
32	728

61	353
62	326
63	299
64	272
65	245

94	0
95	0
96	0

[M2F-zc only]

Total Production STAGE A and Resulting Price in STAGE A

Total	Price/unit	Total	Price/unit	Total	Price/unit
production	STAGE A	production	STAGE A	production	STAGE A
STAGE A		STAGE A		STAGE A	
0	667	33	73	66	0
1	649	34	55	67	0
2	631	35	37	68	0
3	613	36	19	69	0
4	595	37	1	70	0
5	577	38	0	71	0
6	559	39	0	72	0
7	541	40	0	73	0
8	523	41	0	74	0
9	505	42	0	75	0
10	487	43	0	76	0
11	469	44	0	77	0
12	451	45	0	78	0
13	433	46	0	79	0
14	415	47	0	80	0
15	397	48	0	81	0
16	379	49	0	82	0
17	361	50	0	83	0
18	343	51	0	84	0
19	325	52	0	85	0
20	307	53	0	86	0
21	289	54	0	87	0
22	271	55	0	88	0
23	253	56	0	89	0
24	235	57	0	90	0
25	217	58	0	91	0
26	199	59	0	92	0
27	181	60	0	93	0

28	163
29	145
30	127
31	109
32	91

61	0
62	0
63	0
64	0
65	0

94	0
95	0
96	0

[M3F only]

Total Production Stage A and Resulting Price in Stage A

Total	Predicted	Total	Predicte	Total	Predicted
Production	(NE)	Production	d (NE)	Production	(NE)
Stage A	price	Stage A	price	Stage A	price
0	833	33	693	66	218
1	829	34	688	67	191
2	824	35	684	68	164
3	820	36	680	69	137
4	816	37	676	70	110
5	811	38	672	71	83
6	807	39	668	72	56
7	803	40	663	73	29
8	799	41	659	74	2
9	794	42	655	75	0
10	790	43	651	76	0
11	786	44	647	77	0
12	781	45	643	78	0
13	777	46	639	79	0
14	773	47	635	80	0
15	769	48	630	81	0
16	764	49	626	82	0
17	760	50	622	83	0
18	756	51	618	84	0
19	752	52	596	85	0
20	747	53	569	86	0
21	743	54	542	87	0
22	739	55	515	88	0
23	735	56	488	89	0
24	730	57	461	90	0
25	726	58	434	91	0
26	722	59	407	92	0
27	718	60	380	93	0

28	713
29	709
30	705
31	701
32	697

61	353	
62	326	
63	299	
64	272	
65	245	

0.4	0
94	0
95	0
96	0
70	Ŭ

[M2F, M2F-zc, M3F only]

Aggregate Production STAGES A + B and Resulting Price in Stage B

Aggregate	Price/Unit
Production	STAGE B
Stage A+ B	
0	2000
1	1973
2	1946
3	1919
4	1892
5	1865
6	1838
7	1811
8	1784
9	1757
10	1730
11	1703
12	1676
13	1649
14	1622
15	1595
16	1568
17	1541
18	1514
19	1487
20	1460
21	1433
22	1406
23	1379
24	1352
25	1325
26	1298
27	1271

Aggregate	Price/Unit
Production	STAGE B
Stage A+ B	
33	1109
34	1082
35	1055
36	1028
37	1001
38	974
39	947
40	920
41	893
42	866
43	839
44	812
45	785
46	758
47	731
48	704
49	677
50	650
51	623
52	596
53	569
54	542
55	515
56	488
57	461
58	434
59	407
60	380

Aggregate	Price/Unit
Production	STAGE B
Stage A+ B	
66	218
67	191
68	164
69	137
70	110
71	83
72	56
73	29
74	2
75	0
76	0
77	0
78	0
79	0
80	0
81	0
82	0
83	0
84	0
85	0
86	0
87	0
88	0
89	0
90	0
91	0
92	0
93	0

99/	101
-----	-----

94	0
95	0
96	0

61	353
62	326
63	299
64	272
65	245

28	1244
29	1217
30	1190
31	1163
32	1136

[M2, M2-zc, M3, M4 only]

Price/Unit Production

Production	Price/Unit
33	1109
34	1082
35	1055
36	1028
37	1001
38	974
39	947
40	920
41	893
42	866
43	839
44	812
45	785
46	758
47	731
48	704
49	677
50	650
51	623
52	596
53	569
54	542
55	515
56	488
57	461
58	434
59	407
60	380
61	353
62	326

Production	Price/Unit
66	218
67	191
68	164
69	137
70	110
71	83
72	56
73	29
74	2
75	0
76	0
77	0
78	0
79	0
80	0
81	0
82	0
83	0
84	0
85	0
86	0
87	0
88	0
89	0
90	0
91	0
92	0
93	0
94	0
95	0

Total Production and Resulting Price

96	0

63	299
64	272
65	245

30	1190
31	1163
32	1136